Vulnerabilities (CVE)

Filtered by vendor Linux Subscribe
Total 12184 CVE
CVE Vendors Products Updated CVSS v2 CVSS v3
CVE-2025-22078 1 Linux 1 Linux Kernel 2025-10-31 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: staging: vchiq_arm: Fix possible NPR of keep-alive thread In case vchiq_platform_conn_state_changed() is never called or fails before driver removal, ka_thread won't be a valid pointer to a task_struct. So do the necessary checks before calling kthread_stop to avoid a crash.
CVE-2025-22060 1 Linux 1 Linux Kernel 2025-10-31 N/A 4.7 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: net: mvpp2: Prevent parser TCAM memory corruption Protect the parser TCAM/SRAM memory, and the cached (shadow) SRAM information, from concurrent modifications. Both the TCAM and SRAM tables are indirectly accessed by configuring an index register that selects the row to read or write to. This means that operations must be atomic in order to, e.g., avoid spreading writes across multiple rows. Since the shadow SRAM array is used to find free rows in the hardware table, it must also be protected in order to avoid TOCTOU errors where multiple cores allocate the same row. This issue was detected in a situation where `mvpp2_set_rx_mode()` ran concurrently on two CPUs. In this particular case the MVPP2_PE_MAC_UC_PROMISCUOUS entry was corrupted, causing the classifier unit to drop all incoming unicast - indicated by the `rx_classifier_drops` counter.
CVE-2025-22064 1 Linux 1 Linux Kernel 2025-10-31 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: netfilter: nf_tables: don't unregister hook when table is dormant When nf_tables_updchain encounters an error, hook registration needs to be rolled back. This should only be done if the hook has been registered, which won't happen when the table is flagged as dormant (inactive). Just move the assignment into the registration block.
CVE-2025-22071 1 Linux 1 Linux Kernel 2025-10-31 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: spufs: fix a leak in spufs_create_context() Leak fixes back in 2008 missed one case - if we are trying to set affinity and spufs_mkdir() fails, we need to drop the reference to neighbor.
CVE-2025-22073 1 Linux 1 Linux Kernel 2025-10-31 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: spufs: fix a leak on spufs_new_file() failure It's called from spufs_fill_dir(), and caller of that will do spufs_rmdir() in case of failure. That does remove everything we'd managed to create, but... the problem dentry is still negative. IOW, it needs to be explicitly dropped.
CVE-2025-22045 1 Linux 1 Linux Kernel 2025-10-31 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: x86/mm: Fix flush_tlb_range() when used for zapping normal PMDs On the following path, flush_tlb_range() can be used for zapping normal PMD entries (PMD entries that point to page tables) together with the PTE entries in the pointed-to page table: collapse_pte_mapped_thp pmdp_collapse_flush flush_tlb_range The arm64 version of flush_tlb_range() has a comment describing that it can be used for page table removal, and does not use any last-level invalidation optimizations. Fix the X86 version by making it behave the same way. Currently, X86 only uses this information for the following two purposes, which I think means the issue doesn't have much impact: - In native_flush_tlb_multi() for checking if lazy TLB CPUs need to be IPI'd to avoid issues with speculative page table walks. - In Hyper-V TLB paravirtualization, again for lazy TLB stuff. The patch "x86/mm: only invalidate final translations with INVLPGB" which is currently under review (see <https://lore.kernel.org/all/20241230175550.4046587-13-riel@surriel.com/>) would probably be making the impact of this a lot worse.
CVE-2025-22046 1 Linux 1 Linux Kernel 2025-10-31 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: uprobes/x86: Harden uretprobe syscall trampoline check Jann reported a possible issue when trampoline_check_ip returns address near the bottom of the address space that is allowed to call into the syscall if uretprobes are not set up: https://lore.kernel.org/bpf/202502081235.5A6F352985@keescook/T/#m9d416df341b8fbc11737dacbcd29f0054413cbbf Though the mmap minimum address restrictions will typically prevent creating mappings there, let's make sure uretprobe syscall checks for that.
CVE-2025-22047 1 Linux 1 Linux Kernel 2025-10-31 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: x86/microcode/AMD: Fix __apply_microcode_amd()'s return value When verify_sha256_digest() fails, __apply_microcode_amd() should propagate the failure by returning false (and not -1 which is promoted to true).
CVE-2025-22048 1 Linux 1 Linux Kernel 2025-10-31 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: LoongArch: BPF: Don't override subprog's return value The verifier test `calls: div by 0 in subprog` triggers a panic at the ld.bu instruction. The ld.bu insn is trying to load byte from memory address returned by the subprog. The subprog actually set the correct address at the a5 register (dedicated register for BPF return values). But at commit 73c359d1d356 ("LoongArch: BPF: Sign-extend return values") we also sign extended a5 to the a0 register (return value in LoongArch). For function call insn, we later propagate the a0 register back to a5 register. This is right for native calls but wrong for bpf2bpf calls which expect zero-extended return value in a5 register. So only move a0 to a5 for native calls (i.e. non-BPF_PSEUDO_CALL).
CVE-2025-22049 1 Linux 1 Linux Kernel 2025-10-31 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: LoongArch: Increase ARCH_DMA_MINALIGN up to 16 ARCH_DMA_MINALIGN is 1 by default, but some LoongArch-specific devices (such as APBDMA) require 16 bytes alignment. When the data buffer length is too small, the hardware may make an error writing cacheline. Thus, it is dangerous to allocate a small memory buffer for DMA. It's always safe to define ARCH_DMA_MINALIGN as L1_CACHE_BYTES but unnecessary (kmalloc() need small memory objects). Therefore, just increase it to 16.
CVE-2025-22050 1 Linux 1 Linux Kernel 2025-10-31 N/A 4.7 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: usbnet:fix NPE during rx_complete Missing usbnet_going_away Check in Critical Path. The usb_submit_urb function lacks a usbnet_going_away validation, whereas __usbnet_queue_skb includes this check. This inconsistency creates a race condition where: A URB request may succeed, but the corresponding SKB data fails to be queued. Subsequent processes: (e.g., rx_complete → defer_bh → __skb_unlink(skb, list)) attempt to access skb->next, triggering a NULL pointer dereference (Kernel Panic).
CVE-2025-22053 1 Linux 1 Linux Kernel 2025-10-31 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: net: ibmveth: make veth_pool_store stop hanging v2: - Created a single error handling unlock and exit in veth_pool_store - Greatly expanded commit message with previous explanatory-only text Summary: Use rtnl_mutex to synchronize veth_pool_store with itself, ibmveth_close and ibmveth_open, preventing multiple calls in a row to napi_disable. Background: Two (or more) threads could call veth_pool_store through writing to /sys/devices/vio/30000002/pool*/*. You can do this easily with a little shell script. This causes a hang. I configured LOCKDEP, compiled ibmveth.c with DEBUG, and built a new kernel. I ran this test again and saw: Setting pool0/active to 0 Setting pool1/active to 1 [ 73.911067][ T4365] ibmveth 30000002 eth0: close starting Setting pool1/active to 1 Setting pool1/active to 0 [ 73.911367][ T4366] ibmveth 30000002 eth0: close starting [ 73.916056][ T4365] ibmveth 30000002 eth0: close complete [ 73.916064][ T4365] ibmveth 30000002 eth0: open starting [ 110.808564][ T712] systemd-journald[712]: Sent WATCHDOG=1 notification. [ 230.808495][ T712] systemd-journald[712]: Sent WATCHDOG=1 notification. [ 243.683786][ T123] INFO: task stress.sh:4365 blocked for more than 122 seconds. [ 243.683827][ T123] Not tainted 6.14.0-01103-g2df0c02dab82-dirty #8 [ 243.683833][ T123] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [ 243.683838][ T123] task:stress.sh state:D stack:28096 pid:4365 tgid:4365 ppid:4364 task_flags:0x400040 flags:0x00042000 [ 243.683852][ T123] Call Trace: [ 243.683857][ T123] [c00000000c38f690] [0000000000000001] 0x1 (unreliable) [ 243.683868][ T123] [c00000000c38f840] [c00000000001f908] __switch_to+0x318/0x4e0 [ 243.683878][ T123] [c00000000c38f8a0] [c000000001549a70] __schedule+0x500/0x12a0 [ 243.683888][ T123] [c00000000c38f9a0] [c00000000154a878] schedule+0x68/0x210 [ 243.683896][ T123] [c00000000c38f9d0] [c00000000154ac80] schedule_preempt_disabled+0x30/0x50 [ 243.683904][ T123] [c00000000c38fa00] [c00000000154dbb0] __mutex_lock+0x730/0x10f0 [ 243.683913][ T123] [c00000000c38fb10] [c000000001154d40] napi_enable+0x30/0x60 [ 243.683921][ T123] [c00000000c38fb40] [c000000000f4ae94] ibmveth_open+0x68/0x5dc [ 243.683928][ T123] [c00000000c38fbe0] [c000000000f4aa20] veth_pool_store+0x220/0x270 [ 243.683936][ T123] [c00000000c38fc70] [c000000000826278] sysfs_kf_write+0x68/0xb0 [ 243.683944][ T123] [c00000000c38fcb0] [c0000000008240b8] kernfs_fop_write_iter+0x198/0x2d0 [ 243.683951][ T123] [c00000000c38fd00] [c00000000071b9ac] vfs_write+0x34c/0x650 [ 243.683958][ T123] [c00000000c38fdc0] [c00000000071bea8] ksys_write+0x88/0x150 [ 243.683966][ T123] [c00000000c38fe10] [c0000000000317f4] system_call_exception+0x124/0x340 [ 243.683973][ T123] [c00000000c38fe50] [c00000000000d05c] system_call_vectored_common+0x15c/0x2ec ... [ 243.684087][ T123] Showing all locks held in the system: [ 243.684095][ T123] 1 lock held by khungtaskd/123: [ 243.684099][ T123] #0: c00000000278e370 (rcu_read_lock){....}-{1:2}, at: debug_show_all_locks+0x50/0x248 [ 243.684114][ T123] 4 locks held by stress.sh/4365: [ 243.684119][ T123] #0: c00000003a4cd3f8 (sb_writers#3){.+.+}-{0:0}, at: ksys_write+0x88/0x150 [ 243.684132][ T123] #1: c000000041aea888 (&of->mutex#2){+.+.}-{3:3}, at: kernfs_fop_write_iter+0x154/0x2d0 [ 243.684143][ T123] #2: c0000000366fb9a8 (kn->active#64){.+.+}-{0:0}, at: kernfs_fop_write_iter+0x160/0x2d0 [ 243.684155][ T123] #3: c000000035ff4cb8 (&dev->lock){+.+.}-{3:3}, at: napi_enable+0x30/0x60 [ 243.684166][ T123] 5 locks held by stress.sh/4366: [ 243.684170][ T123] #0: c00000003a4cd3f8 (sb_writers#3){.+.+}-{0:0}, at: ksys_write+0x88/0x150 [ 243. ---truncated---
CVE-2025-22055 1 Linux 1 Linux Kernel 2025-10-31 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: net: fix geneve_opt length integer overflow struct geneve_opt uses 5 bit length for each single option, which means every vary size option should be smaller than 128 bytes. However, all current related Netlink policies cannot promise this length condition and the attacker can exploit a exact 128-byte size option to *fake* a zero length option and confuse the parsing logic, further achieve heap out-of-bounds read. One example crash log is like below: [ 3.905425] ================================================================== [ 3.905925] BUG: KASAN: slab-out-of-bounds in nla_put+0xa9/0xe0 [ 3.906255] Read of size 124 at addr ffff888005f291cc by task poc/177 [ 3.906646] [ 3.906775] CPU: 0 PID: 177 Comm: poc-oob-read Not tainted 6.1.132 #1 [ 3.907131] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014 [ 3.907784] Call Trace: [ 3.907925] <TASK> [ 3.908048] dump_stack_lvl+0x44/0x5c [ 3.908258] print_report+0x184/0x4be [ 3.909151] kasan_report+0xc5/0x100 [ 3.909539] kasan_check_range+0xf3/0x1a0 [ 3.909794] memcpy+0x1f/0x60 [ 3.909968] nla_put+0xa9/0xe0 [ 3.910147] tunnel_key_dump+0x945/0xba0 [ 3.911536] tcf_action_dump_1+0x1c1/0x340 [ 3.912436] tcf_action_dump+0x101/0x180 [ 3.912689] tcf_exts_dump+0x164/0x1e0 [ 3.912905] fw_dump+0x18b/0x2d0 [ 3.913483] tcf_fill_node+0x2ee/0x460 [ 3.914778] tfilter_notify+0xf4/0x180 [ 3.915208] tc_new_tfilter+0xd51/0x10d0 [ 3.918615] rtnetlink_rcv_msg+0x4a2/0x560 [ 3.919118] netlink_rcv_skb+0xcd/0x200 [ 3.919787] netlink_unicast+0x395/0x530 [ 3.921032] netlink_sendmsg+0x3d0/0x6d0 [ 3.921987] __sock_sendmsg+0x99/0xa0 [ 3.922220] __sys_sendto+0x1b7/0x240 [ 3.922682] __x64_sys_sendto+0x72/0x90 [ 3.922906] do_syscall_64+0x5e/0x90 [ 3.923814] entry_SYSCALL_64_after_hwframe+0x6e/0xd8 [ 3.924122] RIP: 0033:0x7e83eab84407 [ 3.924331] Code: 48 89 fa 4c 89 df e8 38 aa 00 00 8b 93 08 03 00 00 59 5e 48 83 f8 fc 74 1a 5b c3 0f 1f 84 00 00 00 00 00 48 8b 44 24 10 0f 05 <5b> c3 0f 1f 80 00 00 00 00 83 e2 39 83 faf [ 3.925330] RSP: 002b:00007ffff505e370 EFLAGS: 00000202 ORIG_RAX: 000000000000002c [ 3.925752] RAX: ffffffffffffffda RBX: 00007e83eaafa740 RCX: 00007e83eab84407 [ 3.926173] RDX: 00000000000001a8 RSI: 00007ffff505e3c0 RDI: 0000000000000003 [ 3.926587] RBP: 00007ffff505f460 R08: 00007e83eace1000 R09: 000000000000000c [ 3.926977] R10: 0000000000000000 R11: 0000000000000202 R12: 00007ffff505f3c0 [ 3.927367] R13: 00007ffff505f5c8 R14: 00007e83ead1b000 R15: 00005d4fbbe6dcb8 Fix these issues by enforing correct length condition in related policies.
CVE-2025-22057 1 Linux 1 Linux Kernel 2025-10-31 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: net: decrease cached dst counters in dst_release Upstream fix ac888d58869b ("net: do not delay dst_entries_add() in dst_release()") moved decrementing the dst count from dst_destroy to dst_release to avoid accessing already freed data in case of netns dismantle. However in case CONFIG_DST_CACHE is enabled and OvS+tunnels are used, this fix is incomplete as the same issue will be seen for cached dsts: Unable to handle kernel paging request at virtual address ffff5aabf6b5c000 Call trace: percpu_counter_add_batch+0x3c/0x160 (P) dst_release+0xec/0x108 dst_cache_destroy+0x68/0xd8 dst_destroy+0x13c/0x168 dst_destroy_rcu+0x1c/0xb0 rcu_do_batch+0x18c/0x7d0 rcu_core+0x174/0x378 rcu_core_si+0x18/0x30 Fix this by invalidating the cache, and thus decrementing cached dst counters, in dst_release too.
CVE-2025-22058 1 Linux 1 Linux Kernel 2025-10-31 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: udp: Fix memory accounting leak. Matt Dowling reported a weird UDP memory usage issue. Under normal operation, the UDP memory usage reported in /proc/net/sockstat remains close to zero. However, it occasionally spiked to 524,288 pages and never dropped. Moreover, the value doubled when the application was terminated. Finally, it caused intermittent packet drops. We can reproduce the issue with the script below [0]: 1. /proc/net/sockstat reports 0 pages # cat /proc/net/sockstat | grep UDP: UDP: inuse 1 mem 0 2. Run the script till the report reaches 524,288 # python3 test.py & sleep 5 # cat /proc/net/sockstat | grep UDP: UDP: inuse 3 mem 524288 <-- (INT_MAX + 1) >> PAGE_SHIFT 3. Kill the socket and confirm the number never drops # pkill python3 && sleep 5 # cat /proc/net/sockstat | grep UDP: UDP: inuse 1 mem 524288 4. (necessary since v6.0) Trigger proto_memory_pcpu_drain() # python3 test.py & sleep 1 && pkill python3 5. The number doubles # cat /proc/net/sockstat | grep UDP: UDP: inuse 1 mem 1048577 The application set INT_MAX to SO_RCVBUF, which triggered an integer overflow in udp_rmem_release(). When a socket is close()d, udp_destruct_common() purges its receive queue and sums up skb->truesize in the queue. This total is calculated and stored in a local unsigned integer variable. The total size is then passed to udp_rmem_release() to adjust memory accounting. However, because the function takes a signed integer argument, the total size can wrap around, causing an overflow. Then, the released amount is calculated as follows: 1) Add size to sk->sk_forward_alloc. 2) Round down sk->sk_forward_alloc to the nearest lower multiple of PAGE_SIZE and assign it to amount. 3) Subtract amount from sk->sk_forward_alloc. 4) Pass amount >> PAGE_SHIFT to __sk_mem_reduce_allocated(). When the issue occurred, the total in udp_destruct_common() was 2147484480 (INT_MAX + 833), which was cast to -2147482816 in udp_rmem_release(). At 1) sk->sk_forward_alloc is changed from 3264 to -2147479552, and 2) sets -2147479552 to amount. 3) reverts the wraparound, so we don't see a warning in inet_sock_destruct(). However, udp_memory_allocated ends up doubling at 4). Since commit 3cd3399dd7a8 ("net: implement per-cpu reserves for memory_allocated"), memory usage no longer doubles immediately after a socket is close()d because __sk_mem_reduce_allocated() caches the amount in udp_memory_per_cpu_fw_alloc. However, the next time a UDP socket receives a packet, the subtraction takes effect, causing UDP memory usage to double. This issue makes further memory allocation fail once the socket's sk->sk_rmem_alloc exceeds net.ipv4.udp_rmem_min, resulting in packet drops. To prevent this issue, let's use unsigned int for the calculation and call sk_forward_alloc_add() only once for the small delta. Note that first_packet_length() also potentially has the same problem. [0]: from socket import * SO_RCVBUFFORCE = 33 INT_MAX = (2 ** 31) - 1 s = socket(AF_INET, SOCK_DGRAM) s.bind(('', 0)) s.setsockopt(SOL_SOCKET, SO_RCVBUFFORCE, INT_MAX) c = socket(AF_INET, SOCK_DGRAM) c.connect(s.getsockname()) data = b'a' * 100 while True: c.send(data)
CVE-2025-22034 1 Linux 1 Linux Kernel 2025-10-31 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: mm/gup: reject FOLL_SPLIT_PMD with hugetlb VMAs Patch series "mm: fixes for device-exclusive entries (hmm)", v2. Discussing the PageTail() call in make_device_exclusive_range() with Willy, I recently discovered [1] that device-exclusive handling does not properly work with THP, making the hmm-tests selftests fail if THPs are enabled on the system. Looking into more details, I found that hugetlb is not properly fenced, and I realized that something that was bugging me for longer -- how device-exclusive entries interact with mapcounts -- completely breaks migration/swapout/split/hwpoison handling of these folios while they have device-exclusive PTEs. The program below can be used to allocate 1 GiB worth of pages and making them device-exclusive on a kernel with CONFIG_TEST_HMM. Once they are device-exclusive, these folios cannot get swapped out (proc$pid/smaps_rollup will always indicate 1 GiB RSS no matter how much one forces memory reclaim), and when having a memory block onlined to ZONE_MOVABLE, trying to offline it will loop forever and complain about failed migration of a page that should be movable. # echo offline > /sys/devices/system/memory/memory136/state # echo online_movable > /sys/devices/system/memory/memory136/state # ./hmm-swap & ... wait until everything is device-exclusive # echo offline > /sys/devices/system/memory/memory136/state [ 285.193431][T14882] page: refcount:2 mapcount:0 mapping:0000000000000000 index:0x7f20671f7 pfn:0x442b6a [ 285.196618][T14882] memcg:ffff888179298000 [ 285.198085][T14882] anon flags: 0x5fff0000002091c(referenced|uptodate| dirty|active|owner_2|swapbacked|node=1|zone=3|lastcpupid=0x7ff) [ 285.201734][T14882] raw: ... [ 285.204464][T14882] raw: ... [ 285.207196][T14882] page dumped because: migration failure [ 285.209072][T14882] page_owner tracks the page as allocated [ 285.210915][T14882] page last allocated via order 0, migratetype Movable, gfp_mask 0x140dca(GFP_HIGHUSER_MOVABLE|__GFP_COMP|__GFP_ZERO), id 14926, tgid 14926 (hmm-swap), ts 254506295376, free_ts 227402023774 [ 285.216765][T14882] post_alloc_hook+0x197/0x1b0 [ 285.218874][T14882] get_page_from_freelist+0x76e/0x3280 [ 285.220864][T14882] __alloc_frozen_pages_noprof+0x38e/0x2740 [ 285.223302][T14882] alloc_pages_mpol+0x1fc/0x540 [ 285.225130][T14882] folio_alloc_mpol_noprof+0x36/0x340 [ 285.227222][T14882] vma_alloc_folio_noprof+0xee/0x1a0 [ 285.229074][T14882] __handle_mm_fault+0x2b38/0x56a0 [ 285.230822][T14882] handle_mm_fault+0x368/0x9f0 ... This series fixes all issues I found so far. There is no easy way to fix without a bigger rework/cleanup. I have a bunch of cleanups on top (some previous sent, some the result of the discussion in v1) that I will send out separately once this landed and I get to it. I wish we could just use some special present PROT_NONE PTEs instead of these (non-present, non-none) fake-swap entries; but that just results in the same problem we keep having (lack of spare PTE bits), and staring at other similar fake-swap entries, that ship has sailed. With this series, make_device_exclusive() doesn't actually belong into mm/rmap.c anymore, but I'll leave moving that for another day. I only tested this series with the hmm-tests selftests due to lack of HW, so I'd appreciate some testing, especially if the interaction between two GPUs wanting a device-exclusive entry works as expected. <program> #include <stdio.h> #include <fcntl.h> #include <stdint.h> #include <unistd.h> #include <stdlib.h> #include <string.h> #include <sys/mman.h> #include <sys/ioctl.h> #include <linux/types.h> #include <linux/ioctl.h> #define HMM_DMIRROR_EXCLUSIVE _IOWR('H', 0x05, struct hmm_dmirror_cmd) struct hmm_dmirror_cmd { __u64 addr; __u64 ptr; __u64 npages; __u64 cpages; __u64 faults; }; const size_t size = 1 * 1024 * 1024 * 1024ul; const size_t chunk_size = 2 * 1024 * 1024ul; int m ---truncated---
CVE-2025-22044 1 Linux 1 Linux Kernel 2025-10-31 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: acpi: nfit: fix narrowing conversion in acpi_nfit_ctl Syzkaller has reported a warning in to_nfit_bus_uuid(): "only secondary bus families can be translated". This warning is emited if the argument is equal to NVDIMM_BUS_FAMILY_NFIT == 0. Function acpi_nfit_ctl() first verifies that a user-provided value call_pkg->nd_family of type u64 is not equal to 0. Then the value is converted to int, and only after that is compared to NVDIMM_BUS_FAMILY_MAX. This can lead to passing an invalid argument to acpi_nfit_ctl(), if call_pkg->nd_family is non-zero, while the lower 32 bits are zero. Furthermore, it is best to return EINVAL immediately upon seeing the invalid user input. The WARNING is insufficient to prevent further undefined behavior based on other invalid user input. All checks of the input value should be applied to the original variable call_pkg->nd_family. [iweiny: update commit message]
CVE-2025-37793 1 Linux 1 Linux Kernel 2025-10-31 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: ASoC: Intel: avs: Fix null-ptr-deref in avs_component_probe() devm_kasprintf() returns NULL when memory allocation fails. Currently, avs_component_probe() does not check for this case, which results in a NULL pointer dereference.
CVE-2025-37794 1 Linux 1 Linux Kernel 2025-10-31 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: wifi: mac80211: Purge vif txq in ieee80211_do_stop() After ieee80211_do_stop() SKB from vif's txq could still be processed. Indeed another concurrent vif schedule_and_wake_txq call could cause those packets to be dequeued (see ieee80211_handle_wake_tx_queue()) without checking the sdata current state. Because vif.drv_priv is now cleared in this function, this could lead to driver crash. For example in ath12k, ahvif is store in vif.drv_priv. Thus if ath12k_mac_op_tx() is called after ieee80211_do_stop(), ahvif->ah can be NULL, leading the ath12k_warn(ahvif->ah,...) call in this function to trigger the NULL deref below. Unable to handle kernel paging request at virtual address dfffffc000000001 KASAN: null-ptr-deref in range [0x0000000000000008-0x000000000000000f] batman_adv: bat0: Interface deactivated: brbh1337 Mem abort info: ESR = 0x0000000096000004 EC = 0x25: DABT (current EL), IL = 32 bits SET = 0, FnV = 0 EA = 0, S1PTW = 0 FSC = 0x04: level 0 translation fault Data abort info: ISV = 0, ISS = 0x00000004, ISS2 = 0x00000000 CM = 0, WnR = 0, TnD = 0, TagAccess = 0 GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0 [dfffffc000000001] address between user and kernel address ranges Internal error: Oops: 0000000096000004 [#1] SMP CPU: 1 UID: 0 PID: 978 Comm: lbd Not tainted 6.13.0-g633f875b8f1e #114 Hardware name: HW (DT) pstate: 10000005 (nzcV daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : ath12k_mac_op_tx+0x6cc/0x29b8 [ath12k] lr : ath12k_mac_op_tx+0x174/0x29b8 [ath12k] sp : ffffffc086ace450 x29: ffffffc086ace450 x28: 0000000000000000 x27: 1ffffff810d59ca4 x26: ffffff801d05f7c0 x25: 0000000000000000 x24: 000000004000001e x23: ffffff8009ce4926 x22: ffffff801f9c0800 x21: ffffff801d05f7f0 x20: ffffff8034a19f40 x19: 0000000000000000 x18: ffffff801f9c0958 x17: ffffff800bc0a504 x16: dfffffc000000000 x15: ffffffc086ace4f8 x14: ffffff801d05f83c x13: 0000000000000000 x12: ffffffb003a0bf03 x11: 0000000000000000 x10: ffffffb003a0bf02 x9 : ffffff8034a19f40 x8 : ffffff801d05f818 x7 : 1ffffff0069433dc x6 : ffffff8034a19ee0 x5 : ffffff801d05f7f0 x4 : 0000000000000000 x3 : 0000000000000001 x2 : 0000000000000000 x1 : dfffffc000000000 x0 : 0000000000000008 Call trace: ath12k_mac_op_tx+0x6cc/0x29b8 [ath12k] (P) ieee80211_handle_wake_tx_queue+0x16c/0x260 ieee80211_queue_skb+0xeec/0x1d20 ieee80211_tx+0x200/0x2c8 ieee80211_xmit+0x22c/0x338 __ieee80211_subif_start_xmit+0x7e8/0xc60 ieee80211_subif_start_xmit+0xc4/0xee0 __ieee80211_subif_start_xmit_8023.isra.0+0x854/0x17a0 ieee80211_subif_start_xmit_8023+0x124/0x488 dev_hard_start_xmit+0x160/0x5a8 __dev_queue_xmit+0x6f8/0x3120 br_dev_queue_push_xmit+0x120/0x4a8 __br_forward+0xe4/0x2b0 deliver_clone+0x5c/0xd0 br_flood+0x398/0x580 br_dev_xmit+0x454/0x9f8 dev_hard_start_xmit+0x160/0x5a8 __dev_queue_xmit+0x6f8/0x3120 ip6_finish_output2+0xc28/0x1b60 __ip6_finish_output+0x38c/0x638 ip6_output+0x1b4/0x338 ip6_local_out+0x7c/0xa8 ip6_send_skb+0x7c/0x1b0 ip6_push_pending_frames+0x94/0xd0 rawv6_sendmsg+0x1a98/0x2898 inet_sendmsg+0x94/0xe0 __sys_sendto+0x1e4/0x308 __arm64_sys_sendto+0xc4/0x140 do_el0_svc+0x110/0x280 el0_svc+0x20/0x60 el0t_64_sync_handler+0x104/0x138 el0t_64_sync+0x154/0x158 To avoid that, empty vif's txq at ieee80211_do_stop() so no packet could be dequeued after ieee80211_do_stop() (new packets cannot be queued because SDATA_STATE_RUNNING is cleared at this point).
CVE-2025-37796 1 Linux 1 Linux Kernel 2025-10-31 N/A 7.8 HIGH
In the Linux kernel, the following vulnerability has been resolved: wifi: at76c50x: fix use after free access in at76_disconnect The memory pointed to by priv is freed at the end of at76_delete_device function (using ieee80211_free_hw). But the code then accesses the udev field of the freed object to put the USB device. This may also lead to a memory leak of the usb device. Fix this by using udev from interface.