Vulnerabilities (CVE)

Filtered by NVD-CWE-noinfo
Total 34257 CVE
CVE Vendors Products Updated CVSS v2 CVSS v3
CVE-2022-49970 1 Linux 1 Linux Kernel 2026-01-23 N/A 7.1 HIGH
In the Linux kernel, the following vulnerability has been resolved: bpf, cgroup: Fix kernel BUG in purge_effective_progs Syzkaller reported a triggered kernel BUG as follows: ------------[ cut here ]------------ kernel BUG at kernel/bpf/cgroup.c:925! invalid opcode: 0000 [#1] PREEMPT SMP NOPTI CPU: 1 PID: 194 Comm: detach Not tainted 5.19.0-14184-g69dac8e431af #8 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014 RIP: 0010:__cgroup_bpf_detach+0x1f2/0x2a0 Code: 00 e8 92 60 30 00 84 c0 75 d8 4c 89 e0 31 f6 85 f6 74 19 42 f6 84 28 48 05 00 00 02 75 0e 48 8b 80 c0 00 00 00 48 85 c0 75 e5 <0f> 0b 48 8b 0c5 RSP: 0018:ffffc9000055bdb0 EFLAGS: 00000246 RAX: 0000000000000000 RBX: ffff888100ec0800 RCX: ffffc900000f1000 RDX: 0000000000000000 RSI: 0000000000000001 RDI: ffff888100ec4578 RBP: 0000000000000000 R08: ffff888100ec0800 R09: 0000000000000040 R10: 0000000000000000 R11: 0000000000000000 R12: ffff888100ec4000 R13: 000000000000000d R14: ffffc90000199000 R15: ffff888100effb00 FS: 00007f68213d2b80(0000) GS:ffff88813bc80000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 000055f74a0e5850 CR3: 0000000102836000 CR4: 00000000000006e0 Call Trace: <TASK> cgroup_bpf_prog_detach+0xcc/0x100 __sys_bpf+0x2273/0x2a00 __x64_sys_bpf+0x17/0x20 do_syscall_64+0x3b/0x90 entry_SYSCALL_64_after_hwframe+0x63/0xcd RIP: 0033:0x7f68214dbcb9 Code: 08 44 89 e0 5b 41 5c c3 66 0f 1f 84 00 00 00 00 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff8 RSP: 002b:00007ffeb487db68 EFLAGS: 00000246 ORIG_RAX: 0000000000000141 RAX: ffffffffffffffda RBX: 000000000000000b RCX: 00007f68214dbcb9 RDX: 0000000000000090 RSI: 00007ffeb487db70 RDI: 0000000000000009 RBP: 0000000000000003 R08: 0000000000000012 R09: 0000000b00000003 R10: 00007ffeb487db70 R11: 0000000000000246 R12: 00007ffeb487dc20 R13: 0000000000000004 R14: 0000000000000001 R15: 000055f74a1011b0 </TASK> Modules linked in: ---[ end trace 0000000000000000 ]--- Repetition steps: For the following cgroup tree, root | cg1 | cg2 1. attach prog2 to cg2, and then attach prog1 to cg1, both bpf progs attach type is NONE or OVERRIDE. 2. write 1 to /proc/thread-self/fail-nth for failslab. 3. detach prog1 for cg1, and then kernel BUG occur. Failslab injection will cause kmalloc fail and fall back to purge_effective_progs. The problem is that cg2 have attached another prog, so when go through cg2 layer, iteration will add pos to 1, and subsequent operations will be skipped by the following condition, and cg will meet NULL in the end. `if (pos && !(cg->bpf.flags[atype] & BPF_F_ALLOW_MULTI))` The NULL cg means no link or prog match, this is as expected, and it's not a bug. So here just skip the no match situation.
CVE-2022-50270 1 Linux 1 Linux Kernel 2026-01-23 N/A 7.1 HIGH
In the Linux kernel, the following vulnerability has been resolved: f2fs: fix the assign logic of iocb commit 18ae8d12991b ("f2fs: show more DIO information in tracepoint") introduces iocb field in 'f2fs_direct_IO_enter' trace event And it only assigns the pointer and later it accesses its field in trace print log. Unable to handle kernel paging request at virtual address ffffffc04cef3d30 Mem abort info: ESR = 0x96000007 EC = 0x25: DABT (current EL), IL = 32 bits pc : trace_raw_output_f2fs_direct_IO_enter+0x54/0xa4 lr : trace_raw_output_f2fs_direct_IO_enter+0x2c/0xa4 sp : ffffffc0443cbbd0 x29: ffffffc0443cbbf0 x28: ffffff8935b120d0 x27: ffffff8935b12108 x26: ffffff8935b120f0 x25: ffffff8935b12100 x24: ffffff8935b110c0 x23: ffffff8935b10000 x22: ffffff88859a936c x21: ffffff88859a936c x20: ffffff8935b110c0 x19: ffffff8935b10000 x18: ffffffc03b195060 x17: ffffff8935b11e76 x16: 00000000000000cc x15: ffffffef855c4f2c x14: 0000000000000001 x13: 000000000000004e x12: ffff0000ffffff00 x11: ffffffef86c350d0 x10: 00000000000010c0 x9 : 000000000fe0002c x8 : ffffffc04cef3d28 x7 : 7f7f7f7f7f7f7f7f x6 : 0000000002000000 x5 : ffffff8935b11e9a x4 : 0000000000006250 x3 : ffff0a00ffffff04 x2 : 0000000000000002 x1 : ffffffef86a0a31f x0 : ffffff8935b10000 Call trace: trace_raw_output_f2fs_direct_IO_enter+0x54/0xa4 print_trace_fmt+0x9c/0x138 print_trace_line+0x154/0x254 tracing_read_pipe+0x21c/0x380 vfs_read+0x108/0x3ac ksys_read+0x7c/0xec __arm64_sys_read+0x20/0x30 invoke_syscall+0x60/0x150 el0_svc_common.llvm.1237943816091755067+0xb8/0xf8 do_el0_svc+0x28/0xa0 Fix it by copying the required variables for printing and while at it fix the similar issue at some other places in the same file.
CVE-2022-50471 1 Linux 1 Linux Kernel 2026-01-23 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: xen/gntdev: Accommodate VMA splitting Prior to this commit, the gntdev driver code did not handle the following scenario correctly with paravirtualized (PV) Xen domains: * User process sets up a gntdev mapping composed of two grant mappings (i.e., two pages shared by another Xen domain). * User process munmap()s one of the pages. * User process munmap()s the remaining page. * User process exits. In the scenario above, the user process would cause the kernel to log the following messages in dmesg for the first munmap(), and the second munmap() call would result in similar log messages: BUG: Bad page map in process doublemap.test pte:... pmd:... page:0000000057c97bff refcount:1 mapcount:-1 \ mapping:0000000000000000 index:0x0 pfn:... ... page dumped because: bad pte ... file:gntdev fault:0x0 mmap:gntdev_mmap [xen_gntdev] readpage:0x0 ... Call Trace: <TASK> dump_stack_lvl+0x46/0x5e print_bad_pte.cold+0x66/0xb6 unmap_page_range+0x7e5/0xdc0 unmap_vmas+0x78/0xf0 unmap_region+0xa8/0x110 __do_munmap+0x1ea/0x4e0 __vm_munmap+0x75/0x120 __x64_sys_munmap+0x28/0x40 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x61/0xcb ... For each munmap() call, the Xen hypervisor (if built with CONFIG_DEBUG) would print out the following and trigger a general protection fault in the affected Xen PV domain: (XEN) d0v... Attempt to implicitly unmap d0's grant PTE ... (XEN) d0v... Attempt to implicitly unmap d0's grant PTE ... As of this writing, gntdev_grant_map structure's vma field (referred to as map->vma below) is mainly used for checking the start and end addresses of mappings. However, with split VMAs, these may change, and there could be more than one VMA associated with a gntdev mapping. Hence, remove the use of map->vma and rely on map->pages_vm_start for the original start address and on (map->count << PAGE_SHIFT) for the original mapping size. Let the invalidate() and find_special_page() hooks use these. Also, given that there can be multiple VMAs associated with a gntdev mapping, move the "mmu_interval_notifier_remove(&map->notifier)" call to the end of gntdev_put_map, so that the MMU notifier is only removed after the closing of the last remaining VMA. Finally, use an atomic to prevent inadvertent gntdev mapping re-use, instead of using the map->live_grants atomic counter and/or the map->vma pointer (the latter of which is now removed). This prevents the userspace from mmap()'ing (with MAP_FIXED) a gntdev mapping over the same address range as a previously set up gntdev mapping. This scenario can be summarized with the following call-trace, which was valid prior to this commit: mmap gntdev_mmap mmap (repeat mmap with MAP_FIXED over the same address range) gntdev_invalidate unmap_grant_pages (sets 'being_removed' entries to true) gnttab_unmap_refs_async unmap_single_vma gntdev_mmap (maps the shared pages again) munmap gntdev_invalidate unmap_grant_pages (no-op because 'being_removed' entries are true) unmap_single_vma (For PV domains, Xen reports that a granted page is being unmapped and triggers a general protection fault in the affected domain, if Xen was built with CONFIG_DEBUG) The fix for this last scenario could be worth its own commit, but we opted for a single commit, because removing the gntdev_grant_map structure's vma field requires guarding the entry to gntdev_mmap(), and the live_grants atomic counter is not sufficient on its own to prevent the mmap() over a pre-existing mapping.
CVE-2022-50472 1 Linux 1 Linux Kernel 2026-01-23 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: IB/mad: Don't call to function that might sleep while in atomic context Tracepoints are not allowed to sleep, as such the following splat is generated due to call to ib_query_pkey() in atomic context. WARNING: CPU: 0 PID: 1888000 at kernel/trace/ring_buffer.c:2492 rb_commit+0xc1/0x220 CPU: 0 PID: 1888000 Comm: kworker/u9:0 Kdump: loaded Tainted: G OE --------- - - 4.18.0-305.3.1.el8.x86_64 #1 Hardware name: Red Hat KVM, BIOS 1.13.0-2.module_el8.3.0+555+a55c8938 04/01/2014 Workqueue: ib-comp-unb-wq ib_cq_poll_work [ib_core] RIP: 0010:rb_commit+0xc1/0x220 RSP: 0000:ffffa8ac80f9bca0 EFLAGS: 00010202 RAX: ffff8951c7c01300 RBX: ffff8951c7c14a00 RCX: 0000000000000246 RDX: ffff8951c707c000 RSI: ffff8951c707c57c RDI: ffff8951c7c14a00 RBP: 0000000000000000 R08: 0000000000000000 R09: 0000000000000000 R10: ffff8951c7c01300 R11: 0000000000000001 R12: 0000000000000246 R13: 0000000000000000 R14: ffffffff964c70c0 R15: 0000000000000000 FS: 0000000000000000(0000) GS:ffff8951fbc00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f20e8f39010 CR3: 000000002ca10005 CR4: 0000000000170ef0 Call Trace: ring_buffer_unlock_commit+0x1d/0xa0 trace_buffer_unlock_commit_regs+0x3b/0x1b0 trace_event_buffer_commit+0x67/0x1d0 trace_event_raw_event_ib_mad_recv_done_handler+0x11c/0x160 [ib_core] ib_mad_recv_done+0x48b/0xc10 [ib_core] ? trace_event_raw_event_cq_poll+0x6f/0xb0 [ib_core] __ib_process_cq+0x91/0x1c0 [ib_core] ib_cq_poll_work+0x26/0x80 [ib_core] process_one_work+0x1a7/0x360 ? create_worker+0x1a0/0x1a0 worker_thread+0x30/0x390 ? create_worker+0x1a0/0x1a0 kthread+0x116/0x130 ? kthread_flush_work_fn+0x10/0x10 ret_from_fork+0x35/0x40 ---[ end trace 78ba8509d3830a16 ]---
CVE-2026-22908 1 Sick 2 Tdc-x401gl, Tdc-x401gl Firmware 2026-01-23 N/A 9.1 CRITICAL
Uploading unvalidated container images may allow remote attackers to gain full access to the system, potentially compromising its integrity and confidentiality.
CVE-2026-21889 1 Weblate 1 Weblate 2026-01-23 N/A 7.5 HIGH
Weblate is a web based localization tool. Prior to 5.15.2, the screenshot images were served directly by the HTTP server without proper access control. This could allow an unauthenticated user to access screenshots after guessing their filename. This vulnerability is fixed in 5.15.2.
CVE-2025-38591 1 Linux 1 Linux Kernel 2026-01-23 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: bpf: Reject narrower access to pointer ctx fields The following BPF program, simplified from a syzkaller repro, causes a kernel warning: r0 = *(u8 *)(r1 + 169); exit; With pointer field sk being at offset 168 in __sk_buff. This access is detected as a narrower read in bpf_skb_is_valid_access because it doesn't match offsetof(struct __sk_buff, sk). It is therefore allowed and later proceeds to bpf_convert_ctx_access. Note that for the "is_narrower_load" case in the convert_ctx_accesses(), the insn->off is aligned, so the cnt may not be 0 because it matches the offsetof(struct __sk_buff, sk) in the bpf_convert_ctx_access. However, the target_size stays 0 and the verifier errors with a kernel warning: verifier bug: error during ctx access conversion(1) This patch fixes that to return a proper "invalid bpf_context access off=X size=Y" error on the load instruction. The same issue affects multiple other fields in context structures that allow narrow access. Some other non-affected fields (for sk_msg, sk_lookup, and sockopt) were also changed to use bpf_ctx_range_ptr for consistency. Note this syzkaller crash was reported in the "Closes" link below, which used to be about a different bug, fixed in commit fce7bd8e385a ("bpf/verifier: Handle BPF_LOAD_ACQ instructions in insn_def_regno()"). Because syzbot somehow confused the two bugs, the new crash and repro didn't get reported to the mailing list.
CVE-2025-39794 2 Debian, Linux 2 Debian Linux, Linux Kernel 2026-01-23 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: ARM: tegra: Use I/O memcpy to write to IRAM Kasan crashes the kernel trying to check boundaries when using the normal memcpy.
CVE-2023-53491 1 Linux 1 Linux Kernel 2026-01-23 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: start_kernel: Add __no_stack_protector function attribute Back during the discussion of commit a9a3ed1eff36 ("x86: Fix early boot crash on gcc-10, third try") we discussed the need for a function attribute to control the omission of stack protectors on a per-function basis; at the time Clang had support for no_stack_protector but GCC did not. This was fixed in gcc-11. Now that the function attribute is available, let's start using it. Callers of boot_init_stack_canary need to use this function attribute unless they're compiled with -fno-stack-protector, otherwise the canary stored in the stack slot of the caller will differ upon the call to boot_init_stack_canary. This will lead to a call to __stack_chk_fail() then panic.
CVE-2023-53506 1 Linux 1 Linux Kernel 2026-01-23 N/A 7.8 HIGH
In the Linux kernel, the following vulnerability has been resolved: udf: Do not bother merging very long extents When merging very long extents we try to push as much length as possible to the first extent. However this is unnecessarily complicated and not really worth the trouble. Furthermore there was a bug in the logic resulting in corrupting extents in the file as syzbot reproducer shows. So just don't bother with the merging of extents that are too long together.
CVE-2023-53507 1 Linux 1 Linux Kernel 2026-01-23 N/A 7.8 HIGH
In the Linux kernel, the following vulnerability has been resolved: net/mlx5: Unregister devlink params in case interface is down Currently, in case an interface is down, mlx5 driver doesn't unregister its devlink params, which leads to this WARN[1]. Fix it by unregistering devlink params in that case as well. [1] [ 295.244769 ] WARNING: CPU: 15 PID: 1 at net/core/devlink.c:9042 devlink_free+0x174/0x1fc [ 295.488379 ] CPU: 15 PID: 1 Comm: shutdown Tainted: G S OE 5.15.0-1017.19.3.g0677e61-bluefield #g0677e61 [ 295.509330 ] Hardware name: https://www.mellanox.com BlueField SoC/BlueField SoC, BIOS 4.2.0.12761 Jun 6 2023 [ 295.543096 ] pc : devlink_free+0x174/0x1fc [ 295.551104 ] lr : mlx5_devlink_free+0x18/0x2c [mlx5_core] [ 295.561816 ] sp : ffff80000809b850 [ 295.711155 ] Call trace: [ 295.716030 ] devlink_free+0x174/0x1fc [ 295.723346 ] mlx5_devlink_free+0x18/0x2c [mlx5_core] [ 295.733351 ] mlx5_sf_dev_remove+0x98/0xb0 [mlx5_core] [ 295.743534 ] auxiliary_bus_remove+0x2c/0x50 [ 295.751893 ] __device_release_driver+0x19c/0x280 [ 295.761120 ] device_release_driver+0x34/0x50 [ 295.769649 ] bus_remove_device+0xdc/0x170 [ 295.777656 ] device_del+0x17c/0x3a4 [ 295.784620 ] mlx5_sf_dev_remove+0x28/0xf0 [mlx5_core] [ 295.794800 ] mlx5_sf_dev_table_destroy+0x98/0x110 [mlx5_core] [ 295.806375 ] mlx5_unload+0x34/0xd0 [mlx5_core] [ 295.815339 ] mlx5_unload_one+0x70/0xe4 [mlx5_core] [ 295.824998 ] shutdown+0xb0/0xd8 [mlx5_core] [ 295.833439 ] pci_device_shutdown+0x3c/0xa0 [ 295.841651 ] device_shutdown+0x170/0x340 [ 295.849486 ] __do_sys_reboot+0x1f4/0x2a0 [ 295.857322 ] __arm64_sys_reboot+0x2c/0x40 [ 295.865329 ] invoke_syscall+0x78/0x100 [ 295.872817 ] el0_svc_common.constprop.0+0x54/0x184 [ 295.882392 ] do_el0_svc+0x30/0xac [ 295.889008 ] el0_svc+0x48/0x160 [ 295.895278 ] el0t_64_sync_handler+0xa4/0x130 [ 295.903807 ] el0t_64_sync+0x1a4/0x1a8 [ 295.911120 ] ---[ end trace 4f1d2381d00d9dce ]---
CVE-2023-53508 1 Linux 1 Linux Kernel 2026-01-23 N/A 7.8 HIGH
In the Linux kernel, the following vulnerability has been resolved: ublk: fail to start device if queue setup is interrupted In ublk_ctrl_start_dev(), if wait_for_completion_interruptible() is interrupted by signal, queues aren't setup successfully yet, so we have to fail UBLK_CMD_START_DEV, otherwise kernel oops can be triggered. Reported by German when working on qemu-storage-deamon which requires single thread ublk daemon.
CVE-2023-53509 1 Linux 1 Linux Kernel 2026-01-23 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: qed: allow sleep in qed_mcp_trace_dump() By default, qed_mcp_cmd_and_union() delays 10us at a time in a loop that can run 500K times, so calls to qed_mcp_nvm_rd_cmd() may block the current thread for over 5s. We observed thread scheduling delays over 700ms in production, with stacktraces pointing to this code as the culprit. qed_mcp_trace_dump() is called from ethtool, so sleeping is permitted. It already can sleep in qed_mcp_halt(), which calls qed_mcp_cmd(). Add a "can sleep" parameter to qed_find_nvram_image() and qed_nvram_read() so they can sleep during qed_mcp_trace_dump(). qed_mcp_trace_get_meta_info() and qed_mcp_trace_read_meta(), called only by qed_mcp_trace_dump(), allow these functions to sleep. I can't tell if the other caller (qed_grc_dump_mcp_hw_dump()) can sleep, so keep b_can_sleep set to false when it calls these functions. An example stacktrace from a custom warning we added to the kernel showing a thread that has not scheduled despite long needing resched: [ 2745.362925,17] ------------[ cut here ]------------ [ 2745.362941,17] WARNING: CPU: 23 PID: 5640 at arch/x86/kernel/irq.c:233 do_IRQ+0x15e/0x1a0() [ 2745.362946,17] Thread not rescheduled for 744 ms after irq 99 [ 2745.362956,17] Modules linked in: ... [ 2745.363339,17] CPU: 23 PID: 5640 Comm: lldpd Tainted: P O 4.4.182+ #202104120910+6d1da174272d.61x [ 2745.363343,17] Hardware name: FOXCONN MercuryB/Quicksilver Controller, BIOS H11P1N09 07/08/2020 [ 2745.363346,17] 0000000000000000 ffff885ec07c3ed8 ffffffff8131eb2f ffff885ec07c3f20 [ 2745.363358,17] ffffffff81d14f64 ffff885ec07c3f10 ffffffff81072ac2 ffff88be98ed0000 [ 2745.363369,17] 0000000000000063 0000000000000174 0000000000000074 0000000000000000 [ 2745.363379,17] Call Trace: [ 2745.363382,17] <IRQ> [<ffffffff8131eb2f>] dump_stack+0x8e/0xcf [ 2745.363393,17] [<ffffffff81072ac2>] warn_slowpath_common+0x82/0xc0 [ 2745.363398,17] [<ffffffff81072b4c>] warn_slowpath_fmt+0x4c/0x50 [ 2745.363404,17] [<ffffffff810d5a8e>] ? rcu_irq_exit+0xae/0xc0 [ 2745.363408,17] [<ffffffff817c99fe>] do_IRQ+0x15e/0x1a0 [ 2745.363413,17] [<ffffffff817c7ac9>] common_interrupt+0x89/0x89 [ 2745.363416,17] <EOI> [<ffffffff8132aa74>] ? delay_tsc+0x24/0x50 [ 2745.363425,17] [<ffffffff8132aa04>] __udelay+0x34/0x40 [ 2745.363457,17] [<ffffffffa04d45ff>] qed_mcp_cmd_and_union+0x36f/0x7d0 [qed] [ 2745.363473,17] [<ffffffffa04d5ced>] qed_mcp_nvm_rd_cmd+0x4d/0x90 [qed] [ 2745.363490,17] [<ffffffffa04e1dc7>] qed_mcp_trace_dump+0x4a7/0x630 [qed] [ 2745.363504,17] [<ffffffffa04e2556>] ? qed_fw_asserts_dump+0x1d6/0x1f0 [qed] [ 2745.363520,17] [<ffffffffa04e4ea7>] qed_dbg_mcp_trace_get_dump_buf_size+0x37/0x80 [qed] [ 2745.363536,17] [<ffffffffa04ea881>] qed_dbg_feature_size+0x61/0xa0 [qed] [ 2745.363551,17] [<ffffffffa04eb427>] qed_dbg_all_data_size+0x247/0x260 [qed] [ 2745.363560,17] [<ffffffffa0482c10>] qede_get_regs_len+0x30/0x40 [qede] [ 2745.363566,17] [<ffffffff816c9783>] ethtool_get_drvinfo+0xe3/0x190 [ 2745.363570,17] [<ffffffff816cc152>] dev_ethtool+0x1362/0x2140 [ 2745.363575,17] [<ffffffff8109bcc6>] ? finish_task_switch+0x76/0x260 [ 2745.363580,17] [<ffffffff817c2116>] ? __schedule+0x3c6/0x9d0 [ 2745.363585,17] [<ffffffff810dbd50>] ? hrtimer_start_range_ns+0x1d0/0x370 [ 2745.363589,17] [<ffffffff816c1e5b>] ? dev_get_by_name_rcu+0x6b/0x90 [ 2745.363594,17] [<ffffffff816de6a8>] dev_ioctl+0xe8/0x710 [ 2745.363599,17] [<ffffffff816a58a8>] sock_do_ioctl+0x48/0x60 [ 2745.363603,17] [<ffffffff816a5d87>] sock_ioctl+0x1c7/0x280 [ 2745.363608,17] [<ffffffff8111f393>] ? seccomp_phase1+0x83/0x220 [ 2745.363612,17] [<ffffffff811e3503>] do_vfs_ioctl+0x2b3/0x4e0 [ 2745.363616,17] [<ffffffff811e3771>] SyS_ioctl+0x41/0x70 [ 2745.363619,17] [<ffffffff817c6ffe>] entry_SYSCALL_64_fastpath+0x1e/0x79 [ 2745.363622,17] ---[ end trace f6954aa440266421 ]---
CVE-2025-21973 1 Linux 1 Linux Kernel 2026-01-22 N/A 7.1 HIGH
In the Linux kernel, the following vulnerability has been resolved: eth: bnxt: fix kernel panic in the bnxt_get_queue_stats{rx | tx} When qstats-get operation is executed, callbacks of netdev_stats_ops are called. The bnxt_get_queue_stats{rx | tx} collect per-queue stats from sw_stats in the rings. But {rx | tx | cp}_ring are allocated when the interface is up. So, these rings are not allocated when the interface is down. The qstats-get is allowed even if the interface is down. However, the bnxt_get_queue_stats{rx | tx}() accesses cp_ring and tx_ring without null check. So, it needs to avoid accessing rings if the interface is down. Reproducer: ip link set $interface down ./cli.py --spec netdev.yaml --dump qstats-get OR ip link set $interface down python ./stats.py Splat looks like: BUG: kernel NULL pointer dereference, address: 0000000000000000 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page PGD 1680fa067 P4D 1680fa067 PUD 16be3b067 PMD 0 Oops: Oops: 0000 [#1] PREEMPT SMP NOPTI CPU: 0 UID: 0 PID: 1495 Comm: python3 Not tainted 6.14.0-rc4+ #32 5cd0f999d5a15c574ac72b3e4b907341 Hardware name: ASUS System Product Name/PRIME Z690-P D4, BIOS 0603 11/01/2021 RIP: 0010:bnxt_get_queue_stats_rx+0xf/0x70 [bnxt_en] Code: c6 87 b5 18 00 00 02 eb a2 66 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 0f 1f 44 01 RSP: 0018:ffffabef43cdb7e0 EFLAGS: 00010282 RAX: 0000000000000000 RBX: ffffffffc04c8710 RCX: 0000000000000000 RDX: ffffabef43cdb858 RSI: 0000000000000000 RDI: ffff8d504e850000 RBP: ffff8d506c9f9c00 R08: 0000000000000004 R09: ffff8d506bcd901c R10: 0000000000000015 R11: ffff8d506bcd9000 R12: 0000000000000000 R13: ffffabef43cdb8c0 R14: ffff8d504e850000 R15: 0000000000000000 FS: 00007f2c5462b080(0000) GS:ffff8d575f600000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000000 CR3: 0000000167fd0000 CR4: 00000000007506f0 PKRU: 55555554 Call Trace: <TASK> ? __die+0x20/0x70 ? page_fault_oops+0x15a/0x460 ? sched_balance_find_src_group+0x58d/0xd10 ? exc_page_fault+0x6e/0x180 ? asm_exc_page_fault+0x22/0x30 ? bnxt_get_queue_stats_rx+0xf/0x70 [bnxt_en cdd546fd48563c280cfd30e9647efa420db07bf1] netdev_nl_stats_by_netdev+0x2b1/0x4e0 ? xas_load+0x9/0xb0 ? xas_find+0x183/0x1d0 ? xa_find+0x8b/0xe0 netdev_nl_qstats_get_dumpit+0xbf/0x1e0 genl_dumpit+0x31/0x90 netlink_dump+0x1a8/0x360
CVE-2025-21950 2 Debian, Linux 2 Debian Linux, Linux Kernel 2026-01-22 N/A 7.1 HIGH
In the Linux kernel, the following vulnerability has been resolved: drivers: virt: acrn: hsm: Use kzalloc to avoid info leak in pmcmd_ioctl In the "pmcmd_ioctl" function, three memory objects allocated by kmalloc are initialized by "hcall_get_cpu_state", which are then copied to user space. The initializer is indeed implemented in "acrn_hypercall2" (arch/x86/include/asm/acrn.h). There is a risk of information leakage due to uninitialized bytes.
CVE-2023-53024 1 Linux 1 Linux Kernel 2026-01-22 N/A 7.1 HIGH
In the Linux kernel, the following vulnerability has been resolved: bpf: Fix pointer-leak due to insufficient speculative store bypass mitigation To mitigate Spectre v4, 2039f26f3aca ("bpf: Fix leakage due to insufficient speculative store bypass mitigation") inserts lfence instructions after 1) initializing a stack slot and 2) spilling a pointer to the stack. However, this does not cover cases where a stack slot is first initialized with a pointer (subject to sanitization) but then overwritten with a scalar (not subject to sanitization because the slot was already initialized). In this case, the second write may be subject to speculative store bypass (SSB) creating a speculative pointer-as-scalar type confusion. This allows the program to subsequently leak the numerical pointer value using, for example, a branch-based cache side channel. To fix this, also sanitize scalars if they write a stack slot that previously contained a pointer. Assuming that pointer-spills are only generated by LLVM on register-pressure, the performance impact on most real-world BPF programs should be small. The following unprivileged BPF bytecode drafts a minimal exploit and the mitigation: [...] // r6 = 0 or 1 (skalar, unknown user input) // r7 = accessible ptr for side channel // r10 = frame pointer (fp), to be leaked // r9 = r10 # fp alias to encourage ssb *(u64 *)(r9 - 8) = r10 // fp[-8] = ptr, to be leaked // lfence added here because of pointer spill to stack. // // Ommitted: Dummy bpf_ringbuf_output() here to train alias predictor // for no r9-r10 dependency. // *(u64 *)(r10 - 8) = r6 // fp[-8] = scalar, overwrites ptr // 2039f26f3aca: no lfence added because stack slot was not STACK_INVALID, // store may be subject to SSB // // fix: also add an lfence when the slot contained a ptr // r8 = *(u64 *)(r9 - 8) // r8 = architecturally a scalar, speculatively a ptr // // leak ptr using branch-based cache side channel: r8 &= 1 // choose bit to leak if r8 == 0 goto SLOW // no mispredict // architecturally dead code if input r6 is 0, // only executes speculatively iff ptr bit is 1 r8 = *(u64 *)(r7 + 0) # encode bit in cache (0: slow, 1: fast) SLOW: [...] After running this, the program can time the access to *(r7 + 0) to determine whether the chosen pointer bit was 0 or 1. Repeat this 64 times to recover the whole address on amd64. In summary, sanitization can only be skipped if one scalar is overwritten with another scalar. Scalar-confusion due to speculative store bypass can not lead to invalid accesses because the pointer bounds deducted during verification are enforced using branchless logic. See 979d63d50c0c ("bpf: prevent out of bounds speculation on pointer arithmetic") for details. Do not make the mitigation depend on !env->allow_{uninit_stack,ptr_leaks} because speculative leaks are likely unexpected if these were enabled. For example, leaking the address to a protected log file may be acceptable while disabling the mitigation might unintentionally leak the address into the cached-state of a map that is accessible to unprivileged processes.
CVE-2024-58054 2 Debian, Linux 2 Debian Linux, Linux Kernel 2026-01-22 N/A 7.1 HIGH
In the Linux kernel, the following vulnerability has been resolved: staging: media: max96712: fix kernel oops when removing module The following kernel oops is thrown when trying to remove the max96712 module: Unable to handle kernel paging request at virtual address 00007375746174db Mem abort info: ESR = 0x0000000096000004 EC = 0x25: DABT (current EL), IL = 32 bits SET = 0, FnV = 0 EA = 0, S1PTW = 0 FSC = 0x04: level 0 translation fault Data abort info: ISV = 0, ISS = 0x00000004, ISS2 = 0x00000000 CM = 0, WnR = 0, TnD = 0, TagAccess = 0 GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0 user pgtable: 4k pages, 48-bit VAs, pgdp=000000010af89000 [00007375746174db] pgd=0000000000000000, p4d=0000000000000000 Internal error: Oops: 0000000096000004 [#1] PREEMPT SMP Modules linked in: crct10dif_ce polyval_ce mxc_jpeg_encdec flexcan snd_soc_fsl_sai snd_soc_fsl_asoc_card snd_soc_fsl_micfil dwc_mipi_csi2 imx_csi_formatter polyval_generic v4l2_jpeg imx_pcm_dma can_dev snd_soc_imx_audmux snd_soc_wm8962 snd_soc_imx_card snd_soc_fsl_utils max96712(C-) rpmsg_ctrl rpmsg_char pwm_fan fuse [last unloaded: imx8_isi] CPU: 0 UID: 0 PID: 754 Comm: rmmod Tainted: G C 6.12.0-rc6-06364-g327fec852c31 #17 Tainted: [C]=CRAP Hardware name: NXP i.MX95 19X19 board (DT) pstate: 60400009 (nZCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : led_put+0x1c/0x40 lr : v4l2_subdev_put_privacy_led+0x48/0x58 sp : ffff80008699bbb0 x29: ffff80008699bbb0 x28: ffff00008ac233c0 x27: 0000000000000000 x26: 0000000000000000 x25: 0000000000000000 x24: 0000000000000000 x23: ffff000080cf1170 x22: ffff00008b53bd00 x21: ffff8000822ad1c8 x20: ffff000080ff5c00 x19: ffff00008b53be40 x18: 0000000000000000 x17: 0000000000000000 x16: 0000000000000000 x15: 0000000000000000 x14: 0000000000000004 x13: ffff0000800f8010 x12: 0000000000000000 x11: ffff000082acf5c0 x10: ffff000082acf478 x9 : ffff0000800f8010 x8 : 0101010101010101 x7 : 7f7f7f7f7f7f7f7f x6 : fefefeff6364626d x5 : 8080808000000000 x4 : 0000000000000020 x3 : 00000000553a3dc1 x2 : ffff00008ac233c0 x1 : ffff00008ac233c0 x0 : ff00737574617473 Call trace: led_put+0x1c/0x40 v4l2_subdev_put_privacy_led+0x48/0x58 v4l2_async_unregister_subdev+0x2c/0x1a4 max96712_remove+0x1c/0x38 [max96712] i2c_device_remove+0x2c/0x9c device_remove+0x4c/0x80 device_release_driver_internal+0x1cc/0x228 driver_detach+0x4c/0x98 bus_remove_driver+0x6c/0xbc driver_unregister+0x30/0x60 i2c_del_driver+0x54/0x64 max96712_i2c_driver_exit+0x18/0x1d0 [max96712] __arm64_sys_delete_module+0x1a4/0x290 invoke_syscall+0x48/0x10c el0_svc_common.constprop.0+0xc0/0xe0 do_el0_svc+0x1c/0x28 el0_svc+0x34/0xd8 el0t_64_sync_handler+0x120/0x12c el0t_64_sync+0x190/0x194 Code: f9000bf3 aa0003f3 f9402800 f9402000 (f9403400) ---[ end trace 0000000000000000 ]--- This happens because in v4l2_i2c_subdev_init(), the i2c_set_cliendata() is called again and the data is overwritten to point to sd, instead of priv. So, in remove(), the wrong pointer is passed to v4l2_async_unregister_subdev(), leading to a crash.
CVE-2022-49687 1 Linux 1 Linux Kernel 2026-01-22 N/A 7.1 HIGH
In the Linux kernel, the following vulnerability has been resolved: virtio_net: fix xdp_rxq_info bug after suspend/resume The following sequence currently causes a driver bug warning when using virtio_net: # ip link set eth0 up # echo mem > /sys/power/state (or e.g. # rtcwake -s 10 -m mem) <resume> # ip link set eth0 down Missing register, driver bug WARNING: CPU: 0 PID: 375 at net/core/xdp.c:138 xdp_rxq_info_unreg+0x58/0x60 Call trace: xdp_rxq_info_unreg+0x58/0x60 virtnet_close+0x58/0xac __dev_close_many+0xac/0x140 __dev_change_flags+0xd8/0x210 dev_change_flags+0x24/0x64 do_setlink+0x230/0xdd0 ... This happens because virtnet_freeze() frees the receive_queue completely (including struct xdp_rxq_info) but does not call xdp_rxq_info_unreg(). Similarly, virtnet_restore() sets up the receive_queue again but does not call xdp_rxq_info_reg(). Actually, parts of virtnet_freeze_down() and virtnet_restore_up() are almost identical to virtnet_close() and virtnet_open(): only the calls to xdp_rxq_info_(un)reg() are missing. This means that we can fix this easily and avoid such problems in the future by just calling virtnet_close()/open() from the freeze/restore handlers. Aside from adding the missing xdp_rxq_info calls the only difference is that the refill work is only cancelled if netif_running(). However, this should not make any functional difference since the refill work should only be active if the network interface is actually up.
CVE-2022-49556 1 Linux 1 Linux Kernel 2026-01-22 N/A 7.1 HIGH
In the Linux kernel, the following vulnerability has been resolved: KVM: SVM: Use kzalloc for sev ioctl interfaces to prevent kernel data leak For some sev ioctl interfaces, the length parameter that is passed maybe less than or equal to SEV_FW_BLOB_MAX_SIZE, but larger than the data that PSP firmware returns. In this case, kmalloc will allocate memory that is the size of the input rather than the size of the data. Since PSP firmware doesn't fully overwrite the allocated buffer, these sev ioctl interface may return uninitialized kernel slab memory.
CVE-2024-27401 3 Debian, Fedoraproject, Linux 3 Debian Linux, Fedora, Linux Kernel 2026-01-22 N/A 7.1 HIGH
In the Linux kernel, the following vulnerability has been resolved: firewire: nosy: ensure user_length is taken into account when fetching packet contents Ensure that packet_buffer_get respects the user_length provided. If the length of the head packet exceeds the user_length, packet_buffer_get will now return 0 to signify to the user that no data were read and a larger buffer size is required. Helps prevent user space overflows.