Vulnerabilities (CVE)

Filtered by CWE-787
Total 12693 CVE
CVE Vendors Products Updated CVSS v2 CVSS v3
CVE-2025-1016 1 Mozilla 2 Firefox, Thunderbird 2025-11-03 N/A 9.8 CRITICAL
Memory safety bugs present in Firefox 134, Thunderbird 134, Firefox ESR 115.19, Firefox ESR 128.6, Thunderbird 115.19, and Thunderbird 128.6. Some of these bugs showed evidence of memory corruption and we presume that with enough effort some of these could have been exploited to run arbitrary code. This vulnerability affects Firefox < 135, Firefox ESR < 115.20, Firefox ESR < 128.7, Thunderbird < 128.7, and Thunderbird < 135.
CVE-2024-57876 1 Linux 1 Linux Kernel 2025-11-03 N/A 7.0 HIGH
In the Linux kernel, the following vulnerability has been resolved: drm/dp_mst: Fix resetting msg rx state after topology removal If the MST topology is removed during the reception of an MST down reply or MST up request sideband message, the drm_dp_mst_topology_mgr::up_req_recv/down_rep_recv states could be reset from one thread via drm_dp_mst_topology_mgr_set_mst(false), racing with the reading/parsing of the message from another thread via drm_dp_mst_handle_down_rep() or drm_dp_mst_handle_up_req(). The race is possible since the reader/parser doesn't hold any lock while accessing the reception state. This in turn can lead to a memory corruption in the reader/parser as described by commit bd2fccac61b4 ("drm/dp_mst: Fix MST sideband message body length check"). Fix the above by resetting the message reception state if needed before reading/parsing a message. Another solution would be to hold the drm_dp_mst_topology_mgr::lock for the whole duration of the message reception/parsing in drm_dp_mst_handle_down_rep() and drm_dp_mst_handle_up_req(), however this would require a bigger change. Since the fix is also needed for stable, opting for the simpler solution in this patch.
CVE-2024-57850 1 Linux 1 Linux Kernel 2025-11-03 N/A 7.8 HIGH
In the Linux kernel, the following vulnerability has been resolved: jffs2: Prevent rtime decompress memory corruption The rtime decompression routine does not fully check bounds during the entirety of the decompression pass and can corrupt memory outside the decompression buffer if the compressed data is corrupted. This adds the required check to prevent this failure mode.
CVE-2024-56626 1 Linux 1 Linux Kernel 2025-11-03 N/A 7.8 HIGH
In the Linux kernel, the following vulnerability has been resolved: ksmbd: fix Out-of-Bounds Write in ksmbd_vfs_stream_write An offset from client could be a negative value, It could allows to write data outside the bounds of the allocated buffer. Note that this issue is coming when setting 'vfs objects = streams_xattr parameter' in ksmbd.conf.
CVE-2024-56615 1 Linux 1 Linux Kernel 2025-11-03 N/A 7.8 HIGH
In the Linux kernel, the following vulnerability has been resolved: bpf: fix OOB devmap writes when deleting elements Jordy reported issue against XSKMAP which also applies to DEVMAP - the index used for accessing map entry, due to being a signed integer, causes the OOB writes. Fix is simple as changing the type from int to u32, however, when compared to XSKMAP case, one more thing needs to be addressed. When map is released from system via dev_map_free(), we iterate through all of the entries and an iterator variable is also an int, which implies OOB accesses. Again, change it to be u32. Example splat below: [ 160.724676] BUG: unable to handle page fault for address: ffffc8fc2c001000 [ 160.731662] #PF: supervisor read access in kernel mode [ 160.736876] #PF: error_code(0x0000) - not-present page [ 160.742095] PGD 0 P4D 0 [ 160.744678] Oops: Oops: 0000 [#1] PREEMPT SMP [ 160.749106] CPU: 1 UID: 0 PID: 520 Comm: kworker/u145:12 Not tainted 6.12.0-rc1+ #487 [ 160.757050] Hardware name: Intel Corporation S2600WFT/S2600WFT, BIOS SE5C620.86B.02.01.0008.031920191559 03/19/2019 [ 160.767642] Workqueue: events_unbound bpf_map_free_deferred [ 160.773308] RIP: 0010:dev_map_free+0x77/0x170 [ 160.777735] Code: 00 e8 fd 91 ed ff e8 b8 73 ed ff 41 83 7d 18 19 74 6e 41 8b 45 24 49 8b bd f8 00 00 00 31 db 85 c0 74 48 48 63 c3 48 8d 04 c7 <48> 8b 28 48 85 ed 74 30 48 8b 7d 18 48 85 ff 74 05 e8 b3 52 fa ff [ 160.796777] RSP: 0018:ffffc9000ee1fe38 EFLAGS: 00010202 [ 160.802086] RAX: ffffc8fc2c001000 RBX: 0000000080000000 RCX: 0000000000000024 [ 160.809331] RDX: 0000000000000000 RSI: 0000000000000024 RDI: ffffc9002c001000 [ 160.816576] RBP: 0000000000000000 R08: 0000000000000023 R09: 0000000000000001 [ 160.823823] R10: 0000000000000001 R11: 00000000000ee6b2 R12: dead000000000122 [ 160.831066] R13: ffff88810c928e00 R14: ffff8881002df405 R15: 0000000000000000 [ 160.838310] FS: 0000000000000000(0000) GS:ffff8897e0c40000(0000) knlGS:0000000000000000 [ 160.846528] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 160.852357] CR2: ffffc8fc2c001000 CR3: 0000000005c32006 CR4: 00000000007726f0 [ 160.859604] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 160.866847] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [ 160.874092] PKRU: 55555554 [ 160.876847] Call Trace: [ 160.879338] <TASK> [ 160.881477] ? __die+0x20/0x60 [ 160.884586] ? page_fault_oops+0x15a/0x450 [ 160.888746] ? search_extable+0x22/0x30 [ 160.892647] ? search_bpf_extables+0x5f/0x80 [ 160.896988] ? exc_page_fault+0xa9/0x140 [ 160.900973] ? asm_exc_page_fault+0x22/0x30 [ 160.905232] ? dev_map_free+0x77/0x170 [ 160.909043] ? dev_map_free+0x58/0x170 [ 160.912857] bpf_map_free_deferred+0x51/0x90 [ 160.917196] process_one_work+0x142/0x370 [ 160.921272] worker_thread+0x29e/0x3b0 [ 160.925082] ? rescuer_thread+0x4b0/0x4b0 [ 160.929157] kthread+0xd4/0x110 [ 160.932355] ? kthread_park+0x80/0x80 [ 160.936079] ret_from_fork+0x2d/0x50 [ 160.943396] ? kthread_park+0x80/0x80 [ 160.950803] ret_from_fork_asm+0x11/0x20 [ 160.958482] </TASK>
CVE-2024-56614 1 Linux 1 Linux Kernel 2025-11-03 N/A 7.8 HIGH
In the Linux kernel, the following vulnerability has been resolved: xsk: fix OOB map writes when deleting elements Jordy says: " In the xsk_map_delete_elem function an unsigned integer (map->max_entries) is compared with a user-controlled signed integer (k). Due to implicit type conversion, a large unsigned value for map->max_entries can bypass the intended bounds check: if (k >= map->max_entries) return -EINVAL; This allows k to hold a negative value (between -2147483648 and -2), which is then used as an array index in m->xsk_map[k], which results in an out-of-bounds access. spin_lock_bh(&m->lock); map_entry = &m->xsk_map[k]; // Out-of-bounds map_entry old_xs = unrcu_pointer(xchg(map_entry, NULL)); // Oob write if (old_xs) xsk_map_sock_delete(old_xs, map_entry); spin_unlock_bh(&m->lock); The xchg operation can then be used to cause an out-of-bounds write. Moreover, the invalid map_entry passed to xsk_map_sock_delete can lead to further memory corruption. " It indeed results in following splat: [76612.897343] BUG: unable to handle page fault for address: ffffc8fc2e461108 [76612.904330] #PF: supervisor write access in kernel mode [76612.909639] #PF: error_code(0x0002) - not-present page [76612.914855] PGD 0 P4D 0 [76612.917431] Oops: Oops: 0002 [#1] PREEMPT SMP [76612.921859] CPU: 11 UID: 0 PID: 10318 Comm: a.out Not tainted 6.12.0-rc1+ #470 [76612.929189] Hardware name: Intel Corporation S2600WFT/S2600WFT, BIOS SE5C620.86B.02.01.0008.031920191559 03/19/2019 [76612.939781] RIP: 0010:xsk_map_delete_elem+0x2d/0x60 [76612.944738] Code: 00 00 41 54 55 53 48 63 2e 3b 6f 24 73 38 4c 8d a7 f8 00 00 00 48 89 fb 4c 89 e7 e8 2d bf 05 00 48 8d b4 eb 00 01 00 00 31 ff <48> 87 3e 48 85 ff 74 05 e8 16 ff ff ff 4c 89 e7 e8 3e bc 05 00 31 [76612.963774] RSP: 0018:ffffc9002e407df8 EFLAGS: 00010246 [76612.969079] RAX: 0000000000000000 RBX: ffffc9002e461000 RCX: 0000000000000000 [76612.976323] RDX: 0000000000000001 RSI: ffffc8fc2e461108 RDI: 0000000000000000 [76612.983569] RBP: ffffffff80000001 R08: 0000000000000000 R09: 0000000000000007 [76612.990812] R10: ffffc9002e407e18 R11: ffff888108a38858 R12: ffffc9002e4610f8 [76612.998060] R13: ffff888108a38858 R14: 00007ffd1ae0ac78 R15: ffffc9002e4610c0 [76613.005303] FS: 00007f80b6f59740(0000) GS:ffff8897e0ec0000(0000) knlGS:0000000000000000 [76613.013517] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [76613.019349] CR2: ffffc8fc2e461108 CR3: 000000011e3ef001 CR4: 00000000007726f0 [76613.026595] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [76613.033841] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [76613.041086] PKRU: 55555554 [76613.043842] Call Trace: [76613.046331] <TASK> [76613.048468] ? __die+0x20/0x60 [76613.051581] ? page_fault_oops+0x15a/0x450 [76613.055747] ? search_extable+0x22/0x30 [76613.059649] ? search_bpf_extables+0x5f/0x80 [76613.063988] ? exc_page_fault+0xa9/0x140 [76613.067975] ? asm_exc_page_fault+0x22/0x30 [76613.072229] ? xsk_map_delete_elem+0x2d/0x60 [76613.076573] ? xsk_map_delete_elem+0x23/0x60 [76613.080914] __sys_bpf+0x19b7/0x23c0 [76613.084555] __x64_sys_bpf+0x1a/0x20 [76613.088194] do_syscall_64+0x37/0xb0 [76613.091832] entry_SYSCALL_64_after_hwframe+0x4b/0x53 [76613.096962] RIP: 0033:0x7f80b6d1e88d [76613.100592] Code: 5b 41 5c c3 66 0f 1f 84 00 00 00 00 00 f3 0f 1e fa 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d 73 b5 0f 00 f7 d8 64 89 01 48 [76613.119631] RSP: 002b:00007ffd1ae0ac68 EFLAGS: 00000206 ORIG_RAX: 0000000000000141 [76613.131330] RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007f80b6d1e88d [76613.142632] RDX: 0000000000000098 RSI: 00007ffd1ae0ad20 RDI: 0000000000000003 [76613.153967] RBP: 00007ffd1ae0adc0 R08: 0000000000000000 R09: 0000000000000000 [76613.166030] R10: 00007f80b6f77040 R11: 0000000000000206 R12: 00007ffd1ae0aed8 [76613.177130] R13: 000055ddf42ce1e9 R14: 000055ddf42d0d98 R15: 00 ---truncated---
CVE-2024-56548 1 Linux 1 Linux Kernel 2025-11-03 N/A 7.8 HIGH
In the Linux kernel, the following vulnerability has been resolved: hfsplus: don't query the device logical block size multiple times Devices block sizes may change. One of these cases is a loop device by using ioctl LOOP_SET_BLOCK_SIZE. While this may cause other issues like IO being rejected, in the case of hfsplus, it will allocate a block by using that size and potentially write out-of-bounds when hfsplus_read_wrapper calls hfsplus_submit_bio and the latter function reads a different io_size. Using a new min_io_size initally set to sb_min_blocksize works for the purposes of the original fix, since it will be set to the max between HFSPLUS_SECTOR_SIZE and the first seen logical block size. We still use the max between HFSPLUS_SECTOR_SIZE and min_io_size in case the latter is not initialized. Tested by mounting an hfsplus filesystem with loop block sizes 512, 1024 and 4096. The produced KASAN report before the fix looks like this: [ 419.944641] ================================================================== [ 419.945655] BUG: KASAN: slab-use-after-free in hfsplus_read_wrapper+0x659/0xa0a [ 419.946703] Read of size 2 at addr ffff88800721fc00 by task repro/10678 [ 419.947612] [ 419.947846] CPU: 0 UID: 0 PID: 10678 Comm: repro Not tainted 6.12.0-rc5-00008-gdf56e0f2f3ca #84 [ 419.949007] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.15.0-1 04/01/2014 [ 419.950035] Call Trace: [ 419.950384] <TASK> [ 419.950676] dump_stack_lvl+0x57/0x78 [ 419.951212] ? hfsplus_read_wrapper+0x659/0xa0a [ 419.951830] print_report+0x14c/0x49e [ 419.952361] ? __virt_addr_valid+0x267/0x278 [ 419.952979] ? kmem_cache_debug_flags+0xc/0x1d [ 419.953561] ? hfsplus_read_wrapper+0x659/0xa0a [ 419.954231] kasan_report+0x89/0xb0 [ 419.954748] ? hfsplus_read_wrapper+0x659/0xa0a [ 419.955367] hfsplus_read_wrapper+0x659/0xa0a [ 419.955948] ? __pfx_hfsplus_read_wrapper+0x10/0x10 [ 419.956618] ? do_raw_spin_unlock+0x59/0x1a9 [ 419.957214] ? _raw_spin_unlock+0x1a/0x2e [ 419.957772] hfsplus_fill_super+0x348/0x1590 [ 419.958355] ? hlock_class+0x4c/0x109 [ 419.958867] ? __pfx_hfsplus_fill_super+0x10/0x10 [ 419.959499] ? __pfx_string+0x10/0x10 [ 419.960006] ? lock_acquire+0x3e2/0x454 [ 419.960532] ? bdev_name.constprop.0+0xce/0x243 [ 419.961129] ? __pfx_bdev_name.constprop.0+0x10/0x10 [ 419.961799] ? pointer+0x3f0/0x62f [ 419.962277] ? __pfx_pointer+0x10/0x10 [ 419.962761] ? vsnprintf+0x6c4/0xfba [ 419.963178] ? __pfx_vsnprintf+0x10/0x10 [ 419.963621] ? setup_bdev_super+0x376/0x3b3 [ 419.964029] ? snprintf+0x9d/0xd2 [ 419.964344] ? __pfx_snprintf+0x10/0x10 [ 419.964675] ? lock_acquired+0x45c/0x5e9 [ 419.965016] ? set_blocksize+0x139/0x1c1 [ 419.965381] ? sb_set_blocksize+0x6d/0xae [ 419.965742] ? __pfx_hfsplus_fill_super+0x10/0x10 [ 419.966179] mount_bdev+0x12f/0x1bf [ 419.966512] ? __pfx_mount_bdev+0x10/0x10 [ 419.966886] ? vfs_parse_fs_string+0xce/0x111 [ 419.967293] ? __pfx_vfs_parse_fs_string+0x10/0x10 [ 419.967702] ? __pfx_hfsplus_mount+0x10/0x10 [ 419.968073] legacy_get_tree+0x104/0x178 [ 419.968414] vfs_get_tree+0x86/0x296 [ 419.968751] path_mount+0xba3/0xd0b [ 419.969157] ? __pfx_path_mount+0x10/0x10 [ 419.969594] ? kmem_cache_free+0x1e2/0x260 [ 419.970311] do_mount+0x99/0xe0 [ 419.970630] ? __pfx_do_mount+0x10/0x10 [ 419.971008] __do_sys_mount+0x199/0x1c9 [ 419.971397] do_syscall_64+0xd0/0x135 [ 419.971761] entry_SYSCALL_64_after_hwframe+0x76/0x7e [ 419.972233] RIP: 0033:0x7c3cb812972e [ 419.972564] Code: 48 8b 0d f5 46 0d 00 f7 d8 64 89 01 48 83 c8 ff c3 66 2e 0f 1f 84 00 00 00 00 00 90 f3 0f 1e fa 49 89 ca b8 a5 00 00 00 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d c2 46 0d 00 f7 d8 64 89 01 48 [ 419.974371] RSP: 002b:00007ffe30632548 EFLAGS: 00000286 ORIG_RAX: 00000000000000a5 [ 419.975048] RAX: ffffffffffffffda RBX: 00007ffe306328d8 RCX: 00007c3cb812972e [ 419.975701] RDX: 0000000020000000 RSI: 0000000020000c80 RDI: ---truncated---
CVE-2024-54543 1 Apple 7 Ipados, Iphone Os, Macos and 4 more 2025-11-03 N/A 8.8 HIGH
The issue was addressed with improved memory handling. This issue is fixed in visionOS 2.2, tvOS 18.2, Safari 18.2, watchOS 11.2, iOS 18.2 and iPadOS 18.2, macOS Sequoia 15.2. Processing maliciously crafted web content may lead to memory corruption.
CVE-2024-54509 1 Apple 1 Macos 2025-11-03 N/A 7.8 HIGH
An out-of-bounds write issue was addressed with improved input validation. This issue is fixed in macOS Sonoma 14.7.2, macOS Sequoia 15.2, macOS Sonoma 14.7.3. An app may be able to cause unexpected system termination or write kernel memory.
CVE-2024-53142 1 Linux 1 Linux Kernel 2025-11-03 N/A 7.8 HIGH
In the Linux kernel, the following vulnerability has been resolved: initramfs: avoid filename buffer overrun The initramfs filename field is defined in Documentation/driver-api/early-userspace/buffer-format.rst as: 37 cpio_file := ALGN(4) + cpio_header + filename + "\0" + ALGN(4) + data ... 55 ============= ================== ========================= 56 Field name Field size Meaning 57 ============= ================== ========================= ... 70 c_namesize 8 bytes Length of filename, including final \0 When extracting an initramfs cpio archive, the kernel's do_name() path handler assumes a zero-terminated path at @collected, passing it directly to filp_open() / init_mkdir() / init_mknod(). If a specially crafted cpio entry carries a non-zero-terminated filename and is followed by uninitialized memory, then a file may be created with trailing characters that represent the uninitialized memory. The ability to create an initramfs entry would imply already having full control of the system, so the buffer overrun shouldn't be considered a security vulnerability. Append the output of the following bash script to an existing initramfs and observe any created /initramfs_test_fname_overrunAA* path. E.g. ./reproducer.sh | gzip >> /myinitramfs It's easiest to observe non-zero uninitialized memory when the output is gzipped, as it'll overflow the heap allocated @out_buf in __gunzip(), rather than the initrd_start+initrd_size block. ---- reproducer.sh ---- nilchar="A" # change to "\0" to properly zero terminate / pad magic="070701" ino=1 mode=$(( 0100777 )) uid=0 gid=0 nlink=1 mtime=1 filesize=0 devmajor=0 devminor=1 rdevmajor=0 rdevminor=0 csum=0 fname="initramfs_test_fname_overrun" namelen=$(( ${#fname} + 1 )) # plus one to account for terminator printf "%s%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%s" \ $magic $ino $mode $uid $gid $nlink $mtime $filesize \ $devmajor $devminor $rdevmajor $rdevminor $namelen $csum $fname termpadlen=$(( 1 + ((4 - ((110 + $namelen) & 3)) % 4) )) printf "%.s${nilchar}" $(seq 1 $termpadlen) ---- reproducer.sh ---- Symlink filename fields handled in do_symlink() won't overrun past the data segment, due to the explicit zero-termination of the symlink target. Fix filename buffer overrun by aborting the initramfs FSM if any cpio entry doesn't carry a zero-terminator at the expected (name_len - 1) offset.
CVE-2024-47613 1 Gstreamer Project 1 Gstreamer 2025-11-03 N/A 9.8 CRITICAL
GStreamer is a library for constructing graphs of media-handling components. A null pointer dereference vulnerability has been identified in `gst_gdk_pixbuf_dec_flush` within `gstgdkpixbufdec.c`. This function invokes `memcpy`, using `out_pix` as the destination address. `out_pix` is expected to point to the frame 0 from the frame structure, which is read from the input file. However, in certain situations, it can points to a NULL frame, causing the subsequent call to `memcpy` to attempt writing to the null address (0x00), leading to a null pointer dereference. This vulnerability can result in a Denial of Service (DoS) by triggering a segmentation fault (SEGV). This vulnerability is fixed in 1.24.10.
CVE-2024-47539 1 Gstreamer Project 1 Gstreamer 2025-11-03 N/A 9.8 CRITICAL
GStreamer is a library for constructing graphs of media-handling components. An out-of-bounds write vulnerability was identified in the convert_to_s334_1a function in isomp4/qtdemux.c. The vulnerability arises due to a discrepancy between the size of memory allocated to the storage array and the loop condition i * 2 < ccpair_size. Specifically, when ccpair_size is even, the allocated size in storage does not match the loop's expected bounds, resulting in an out-of-bounds write. This bug allows for the overwriting of up to 3 bytes beyond the allocated bounds of the storage array. This vulnerability is fixed in 1.24.10.
CVE-2024-47537 1 Gstreamer Project 1 Gstreamer 2025-11-03 N/A 9.8 CRITICAL
GStreamer is a library for constructing graphs of media-handling components. The program attempts to reallocate the memory pointed to by stream->samples to accommodate stream->n_samples + samples_count elements of type QtDemuxSample. The problem is that samples_count is read from the input file. And if this value is big enough, this can lead to an integer overflow during the addition. As a consequence, g_try_renew might allocate memory for a significantly smaller number of elements than intended. Following this, the program iterates through samples_count elements and attempts to write samples_count number of elements, potentially exceeding the actual allocated memory size and causing an OOB-write. This vulnerability is fixed in 1.24.10.
CVE-2024-43097 1 Google 1 Android 2025-11-03 N/A 7.8 HIGH
In resizeToAtLeast of SkRegion.cpp, there is a possible out of bounds write due to an integer overflow. This could lead to local escalation of privilege with no additional execution privileges needed. User interaction is not needed for exploitation.
CVE-2024-37894 1 Squid-cache 1 Squid 2025-11-03 N/A 6.3 MEDIUM
Squid is a caching proxy for the Web supporting HTTP, HTTPS, FTP, and more. Due to an Out-of-bounds Write error when assigning ESI variables, Squid is susceptible to a Memory Corruption error. This error can lead to a Denial of Service attack.
CVE-2024-32039 2 Fedoraproject, Freerdp 2 Fedora, Freerdp 2025-11-03 N/A 9.8 CRITICAL
FreeRDP is a free implementation of the Remote Desktop Protocol. FreeRDP based clients using a version of FreeRDP prior to 3.5.0 or 2.11.6 are vulnerable to integer overflow and out-of-bounds write. Versions 3.5.0 and 2.11.6 patch the issue. As a workaround, do not use `/gfx` options (e.g. deactivate with `/bpp:32` or `/rfx` as it is on by default).
CVE-2024-10918 1 Libmodbus 1 Libmodbus 2025-11-03 N/A 4.8 MEDIUM
Stack-based Buffer Overflow vulnerability in libmodbus v3.1.10 allows to overflow the buffer allocated for the Modbus response if the function tries to reply to a Modbus request with an unexpected length.
CVE-2024-10525 1 Eclipse 1 Mosquitto 2025-11-03 N/A 9.8 CRITICAL
In Eclipse Mosquitto, from version 1.3.2 through 2.0.18, if a malicious broker sends a crafted SUBACK packet with no reason codes, a client using libmosquitto may make out of bounds memory access when acting in its on_subscribe callback. This affects the mosquitto_sub and mosquitto_rr clients.
CVE-2023-52916 1 Linux 1 Linux Kernel 2025-11-03 N/A 7.8 HIGH
In the Linux kernel, the following vulnerability has been resolved: media: aspeed: Fix memory overwrite if timing is 1600x900 When capturing 1600x900, system could crash when system memory usage is tight. The way to reproduce this issue: 1. Use 1600x900 to display on host 2. Mount ISO through 'Virtual media' on OpenBMC's web 3. Run script as below on host to do sha continuously #!/bin/bash while [ [1] ]; do find /media -type f -printf '"%h/%f"\n' | xargs sha256sum done 4. Open KVM on OpenBMC's web The size of macro block captured is 8x8. Therefore, we should make sure the height of src-buf is 8 aligned to fix this issue.
CVE-2023-52356 2 Libtiff, Redhat 2 Libtiff, Enterprise Linux 2025-11-03 N/A 7.5 HIGH
A segment fault (SEGV) flaw was found in libtiff that could be triggered by passing a crafted tiff file to the TIFFReadRGBATileExt() API. This flaw allows a remote attacker to cause a heap-buffer overflow, leading to a denial of service.