Filtered by vendor Linux
Subscribe
Total
14198 CVE
| CVE | Vendors | Products | Updated | CVSS v2 | CVSS v3 |
|---|---|---|---|---|---|
| CVE-2024-49857 | 1 Linux | 1 Linux Kernel | 2024-10-22 | N/A | 5.5 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: wifi: iwlwifi: mvm: set the cipher for secured NDP ranging The cipher pointer is not set, but is derefereced trying to set its content, which leads to a NULL pointer dereference. Fix it by pointing to the cipher parameter before dereferencing. | |||||
| CVE-2024-47744 | 1 Linux | 1 Linux Kernel | 2024-10-22 | N/A | 5.5 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: KVM: Use dedicated mutex to protect kvm_usage_count to avoid deadlock Use a dedicated mutex to guard kvm_usage_count to fix a potential deadlock on x86 due to a chain of locks and SRCU synchronizations. Translating the below lockdep splat, CPU1 #6 will wait on CPU0 #1, CPU0 #8 will wait on CPU2 #3, and CPU2 #7 will wait on CPU1 #4 (if there's a writer, due to the fairness of r/w semaphores). CPU0 CPU1 CPU2 1 lock(&kvm->slots_lock); 2 lock(&vcpu->mutex); 3 lock(&kvm->srcu); 4 lock(cpu_hotplug_lock); 5 lock(kvm_lock); 6 lock(&kvm->slots_lock); 7 lock(cpu_hotplug_lock); 8 sync(&kvm->srcu); Note, there are likely more potential deadlocks in KVM x86, e.g. the same pattern of taking cpu_hotplug_lock outside of kvm_lock likely exists with __kvmclock_cpufreq_notifier(): cpuhp_cpufreq_online() | -> cpufreq_online() | -> cpufreq_gov_performance_limits() | -> __cpufreq_driver_target() | -> __target_index() | -> cpufreq_freq_transition_begin() | -> cpufreq_notify_transition() | -> ... __kvmclock_cpufreq_notifier() But, actually triggering such deadlocks is beyond rare due to the combination of dependencies and timings involved. E.g. the cpufreq notifier is only used on older CPUs without a constant TSC, mucking with the NX hugepage mitigation while VMs are running is very uncommon, and doing so while also onlining/offlining a CPU (necessary to generate contention on cpu_hotplug_lock) would be even more unusual. The most robust solution to the general cpu_hotplug_lock issue is likely to switch vm_list to be an RCU-protected list, e.g. so that x86's cpufreq notifier doesn't to take kvm_lock. For now, settle for fixing the most blatant deadlock, as switching to an RCU-protected list is a much more involved change, but add a comment in locking.rst to call out that care needs to be taken when walking holding kvm_lock and walking vm_list. ====================================================== WARNING: possible circular locking dependency detected 6.10.0-smp--c257535a0c9d-pip #330 Tainted: G S O ------------------------------------------------------ tee/35048 is trying to acquire lock: ff6a80eced71e0a8 (&kvm->slots_lock){+.+.}-{3:3}, at: set_nx_huge_pages+0x179/0x1e0 [kvm] but task is already holding lock: ffffffffc07abb08 (kvm_lock){+.+.}-{3:3}, at: set_nx_huge_pages+0x14a/0x1e0 [kvm] which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #3 (kvm_lock){+.+.}-{3:3}: __mutex_lock+0x6a/0xb40 mutex_lock_nested+0x1f/0x30 kvm_dev_ioctl+0x4fb/0xe50 [kvm] __se_sys_ioctl+0x7b/0xd0 __x64_sys_ioctl+0x21/0x30 x64_sys_call+0x15d0/0x2e60 do_syscall_64+0x83/0x160 entry_SYSCALL_64_after_hwframe+0x76/0x7e -> #2 (cpu_hotplug_lock){++++}-{0:0}: cpus_read_lock+0x2e/0xb0 static_key_slow_inc+0x16/0x30 kvm_lapic_set_base+0x6a/0x1c0 [kvm] kvm_set_apic_base+0x8f/0xe0 [kvm] kvm_set_msr_common+0x9ae/0xf80 [kvm] vmx_set_msr+0xa54/0xbe0 [kvm_intel] __kvm_set_msr+0xb6/0x1a0 [kvm] kvm_arch_vcpu_ioctl+0xeca/0x10c0 [kvm] kvm_vcpu_ioctl+0x485/0x5b0 [kvm] __se_sys_ioctl+0x7b/0xd0 __x64_sys_ioctl+0x21/0x30 x64_sys_call+0x15d0/0x2e60 do_syscall_64+0x83/0x160 entry_SYSCALL_64_after_hwframe+0x76/0x7e -> #1 (&kvm->srcu){.+.+}-{0:0}: __synchronize_srcu+0x44/0x1a0 ---truncated--- | |||||
| CVE-2024-47681 | 1 Linux | 1 Linux Kernel | 2024-10-22 | N/A | 5.5 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: wifi: mt76: mt7996: fix NULL pointer dereference in mt7996_mcu_sta_bfer_he Fix the NULL pointer dereference in mt7996_mcu_sta_bfer_he routine adding an sta interface to the mt7996 driver. Found by code review. | |||||
| CVE-2024-47677 | 1 Linux | 1 Linux Kernel | 2024-10-22 | N/A | 5.5 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: exfat: resolve memory leak from exfat_create_upcase_table() If exfat_load_upcase_table reaches end and returns -EINVAL, allocated memory doesn't get freed and while exfat_load_default_upcase_table allocates more memory, leading to a memory leak. Here's link to syzkaller crash report illustrating this issue: https://syzkaller.appspot.com/text?tag=CrashReport&x=1406c201980000 | |||||
| CVE-2024-43485 | 3 Apple, Linux, Microsoft | 5 Macos, Linux Kernel, .net and 2 more | 2024-10-21 | N/A | 7.5 HIGH |
| .NET and Visual Studio Denial of Service Vulnerability | |||||
| CVE-2024-43483 | 3 Apple, Linux, Microsoft | 21 Macos, Linux Kernel, .net and 18 more | 2024-10-21 | N/A | 7.5 HIGH |
| .NET, .NET Framework, and Visual Studio Denial of Service Vulnerability | |||||
| CVE-2024-45071 | 5 Hp, Ibm, Linux and 2 more | 8 Hp-ux, Aix, I and 5 more | 2024-10-21 | N/A | 4.8 MEDIUM |
| IBM WebSphere Application Server 8.5 and 9.0 is vulnerable to stored cross-site scripting. This vulnerability allows a privileged user to embed arbitrary JavaScript code in the Web UI thus altering the intended functionality potentially leading to credentials disclosure within a trusted session. | |||||
| CVE-2024-45072 | 5 Hp, Ibm, Linux and 2 more | 8 Hp-ux, Aix, I and 5 more | 2024-10-21 | N/A | 5.5 MEDIUM |
| IBM WebSphere Application Server 8.5 and 9.0 is vulnerable to an XML External Entity Injection (XXE) attack when processing XML data. A privileged user could exploit this vulnerability to expose sensitive information or consume memory resources. | |||||
| CVE-2024-43480 | 2 Linux, Microsoft | 2 Linux Kernel, Azure Service Fabric | 2024-10-17 | N/A | 6.6 MEDIUM |
| Azure Service Fabric for Linux Remote Code Execution Vulnerability | |||||
| CVE-2023-52904 | 1 Linux | 1 Linux Kernel | 2024-10-17 | N/A | 5.5 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: ALSA: usb-audio: Fix possible NULL pointer dereference in snd_usb_pcm_has_fixed_rate() The subs function argument may be NULL, so do not use it before the NULL check. | |||||
| CVE-2024-47661 | 1 Linux | 1 Linux Kernel | 2024-10-15 | N/A | 5.5 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Avoid overflow from uint32_t to uint8_t [WHAT & HOW] dmub_rb_cmd's ramping_boundary has size of uint8_t and it is assigned 0xFFFF. Fix it by changing it to uint8_t with value of 0xFF. This fixes 2 INTEGER_OVERFLOW issues reported by Coverity. | |||||
| CVE-2024-25707 | 3 Esri, Linux, Microsoft | 3 Portal For Arcgis, Linux Kernel, Windows | 2024-10-15 | N/A | 4.8 MEDIUM |
| There is a reflected cross site scripting in Esri Portal for ArcGIS 11.1 and below on Windows and Linux x64 allows a remote authenticated attacker with administrative access to supply a crafted string which could potentially execute arbitrary JavaScript code in the their own browser (Self XSS). A user cannot be phished into clicking a link to execute code. | |||||
| CVE-2024-44959 | 1 Linux | 1 Linux Kernel | 2024-10-10 | N/A | 5.5 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: tracefs: Use generic inode RCU for synchronizing freeing With structure layout randomization enabled for 'struct inode' we need to avoid overlapping any of the RCU-used / initialized-only-once members, e.g. i_lru or i_sb_list to not corrupt related list traversals when making use of the rcu_head. For an unlucky structure layout of 'struct inode' we may end up with the following splat when running the ftrace selftests: [<...>] list_del corruption, ffff888103ee2cb0->next (tracefs_inode_cache+0x0/0x4e0 [slab object]) is NULL (prev is tracefs_inode_cache+0x78/0x4e0 [slab object]) [<...>] ------------[ cut here ]------------ [<...>] kernel BUG at lib/list_debug.c:54! [<...>] invalid opcode: 0000 [#1] PREEMPT SMP KASAN [<...>] CPU: 3 PID: 2550 Comm: mount Tainted: G N 6.8.12-grsec+ #122 ed2f536ca62f28b087b90e3cc906a8d25b3ddc65 [<...>] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.14.0-2 04/01/2014 [<...>] RIP: 0010:[<ffffffff84656018>] __list_del_entry_valid_or_report+0x138/0x3e0 [<...>] Code: 48 b8 99 fb 65 f2 ff ff ff ff e9 03 5c d9 fc cc 48 b8 99 fb 65 f2 ff ff ff ff e9 33 5a d9 fc cc 48 b8 99 fb 65 f2 ff ff ff ff <0f> 0b 4c 89 e9 48 89 ea 48 89 ee 48 c7 c7 60 8f dd 89 31 c0 e8 2f [<...>] RSP: 0018:fffffe80416afaf0 EFLAGS: 00010283 [<...>] RAX: 0000000000000098 RBX: ffff888103ee2cb0 RCX: 0000000000000000 [<...>] RDX: ffffffff84655fe8 RSI: ffffffff89dd8b60 RDI: 0000000000000001 [<...>] RBP: ffff888103ee2cb0 R08: 0000000000000001 R09: fffffbd0082d5f25 [<...>] R10: fffffe80416af92f R11: 0000000000000001 R12: fdf99c16731d9b6d [<...>] R13: 0000000000000000 R14: ffff88819ad4b8b8 R15: 0000000000000000 [<...>] RBX: tracefs_inode_cache+0x0/0x4e0 [slab object] [<...>] RDX: __list_del_entry_valid_or_report+0x108/0x3e0 [<...>] RSI: __func__.47+0x4340/0x4400 [<...>] RBP: tracefs_inode_cache+0x0/0x4e0 [slab object] [<...>] RSP: process kstack fffffe80416afaf0+0x7af0/0x8000 [mount 2550 2550] [<...>] R09: kasan shadow of process kstack fffffe80416af928+0x7928/0x8000 [mount 2550 2550] [<...>] R10: process kstack fffffe80416af92f+0x792f/0x8000 [mount 2550 2550] [<...>] R14: tracefs_inode_cache+0x78/0x4e0 [slab object] [<...>] FS: 00006dcb380c1840(0000) GS:ffff8881e0600000(0000) knlGS:0000000000000000 [<...>] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [<...>] CR2: 000076ab72b30e84 CR3: 000000000b088004 CR4: 0000000000360ef0 shadow CR4: 0000000000360ef0 [<...>] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [<...>] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [<...>] ASID: 0003 [<...>] Stack: [<...>] ffffffff818a2315 00000000f5c856ee ffffffff896f1840 ffff888103ee2cb0 [<...>] ffff88812b6b9750 0000000079d714b6 fffffbfff1e9280b ffffffff8f49405f [<...>] 0000000000000001 0000000000000000 ffff888104457280 ffffffff8248b392 [<...>] Call Trace: [<...>] <TASK> [<...>] [<ffffffff818a2315>] ? lock_release+0x175/0x380 fffffe80416afaf0 [<...>] [<ffffffff8248b392>] list_lru_del+0x152/0x740 fffffe80416afb48 [<...>] [<ffffffff8248ba93>] list_lru_del_obj+0x113/0x280 fffffe80416afb88 [<...>] [<ffffffff8940fd19>] ? _atomic_dec_and_lock+0x119/0x200 fffffe80416afb90 [<...>] [<ffffffff8295b244>] iput_final+0x1c4/0x9a0 fffffe80416afbb8 [<...>] [<ffffffff8293a52b>] dentry_unlink_inode+0x44b/0xaa0 fffffe80416afbf8 [<...>] [<ffffffff8293fefc>] __dentry_kill+0x23c/0xf00 fffffe80416afc40 [<...>] [<ffffffff8953a85f>] ? __this_cpu_preempt_check+0x1f/0xa0 fffffe80416afc48 [<...>] [<ffffffff82949ce5>] ? shrink_dentry_list+0x1c5/0x760 fffffe80416afc70 [<...>] [<ffffffff82949b71>] ? shrink_dentry_list+0x51/0x760 fffffe80416afc78 [<...>] [<ffffffff82949da8>] shrink_dentry_list+0x288/0x760 fffffe80416afc80 [<...>] [<ffffffff8294ae75>] shrink_dcache_sb+0x155/0x420 fffffe80416afcc8 [<...>] [<ffffffff8953a7c3>] ? debug_smp_processor_id+0x23/0xa0 fffffe80416afce0 [<...>] [<ffffffff8294ad20>] ? do_one_tre ---truncated--- | |||||
| CVE-2024-44976 | 1 Linux | 1 Linux Kernel | 2024-10-10 | N/A | 5.5 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: ata: pata_macio: Fix DMA table overflow Kolbjørn and Jonáš reported that their 32-bit PowerMacs were crashing in pata-macio since commit 09fe2bfa6b83 ("ata: pata_macio: Fix max_segment_size with PAGE_SIZE == 64K"). For example: kernel BUG at drivers/ata/pata_macio.c:544! Oops: Exception in kernel mode, sig: 5 [#1] BE PAGE_SIZE=4K MMU=Hash SMP NR_CPUS=2 DEBUG_PAGEALLOC PowerMac ... NIP pata_macio_qc_prep+0xf4/0x190 LR pata_macio_qc_prep+0xfc/0x190 Call Trace: 0xc1421660 (unreliable) ata_qc_issue+0x14c/0x2d4 __ata_scsi_queuecmd+0x200/0x53c ata_scsi_queuecmd+0x50/0xe0 scsi_queue_rq+0x788/0xb1c __blk_mq_issue_directly+0x58/0xf4 blk_mq_plug_issue_direct+0x8c/0x1b4 blk_mq_flush_plug_list.part.0+0x584/0x5e0 __blk_flush_plug+0xf8/0x194 __submit_bio+0x1b8/0x2e0 submit_bio_noacct_nocheck+0x230/0x304 btrfs_work_helper+0x200/0x338 process_one_work+0x1a8/0x338 worker_thread+0x364/0x4c0 kthread+0x100/0x104 start_kernel_thread+0x10/0x14 That commit increased max_segment_size to 64KB, with the justification that the SCSI core was already using that size when PAGE_SIZE == 64KB, and that there was existing logic to split over-sized requests. However with a sufficiently large request, the splitting logic causes each sg to be split into two commands in the DMA table, leading to overflow of the DMA table, triggering the BUG_ON(). With default settings the bug doesn't trigger, because the request size is limited by max_sectors_kb == 1280, however max_sectors_kb can be increased, and apparently some distros do that by default using udev rules. Fix the bug for 4KB kernels by reverting to the old max_segment_size. For 64KB kernels the sg_tablesize needs to be halved, to allow for the possibility that each sg will be split into two. | |||||
| CVE-2024-44979 | 1 Linux | 1 Linux Kernel | 2024-10-10 | N/A | 5.5 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: drm/xe: Fix missing workqueue destroy in xe_gt_pagefault On driver reload we never free up the memory for the pagefault and access counter workqueues. Add those destroy calls here. (cherry picked from commit 7586fc52b14e0b8edd0d1f8a434e0de2078b7b2b) | |||||
| CVE-2024-44980 | 1 Linux | 1 Linux Kernel | 2024-10-10 | N/A | 5.5 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: drm/xe: Fix opregion leak Being part o the display, ideally the setup and cleanup would be done by display itself. However this is a bigger refactor that needs to be done on both i915 and xe. For now, just fix the leak: unreferenced object 0xffff8881a0300008 (size 192): comm "modprobe", pid 4354, jiffies 4295647021 hex dump (first 32 bytes): 00 00 87 27 81 88 ff ff 18 80 9b 00 00 c9 ff ff ...'............ 18 81 9b 00 00 c9 ff ff 00 00 00 00 00 00 00 00 ................ backtrace (crc 99260e31): [<ffffffff823ce65b>] kmemleak_alloc+0x4b/0x80 [<ffffffff81493be2>] kmalloc_trace_noprof+0x312/0x3d0 [<ffffffffa1345679>] intel_opregion_setup+0x89/0x700 [xe] [<ffffffffa125bfaf>] xe_display_init_noirq+0x2f/0x90 [xe] [<ffffffffa1199ec3>] xe_device_probe+0x7a3/0xbf0 [xe] [<ffffffffa11f3713>] xe_pci_probe+0x333/0x5b0 [xe] [<ffffffff81af6be8>] local_pci_probe+0x48/0xb0 [<ffffffff81af8778>] pci_device_probe+0xc8/0x280 [<ffffffff81d09048>] really_probe+0xf8/0x390 [<ffffffff81d0937a>] __driver_probe_device+0x8a/0x170 [<ffffffff81d09503>] driver_probe_device+0x23/0xb0 [<ffffffff81d097b7>] __driver_attach+0xc7/0x190 [<ffffffff81d0628d>] bus_for_each_dev+0x7d/0xd0 [<ffffffff81d0851e>] driver_attach+0x1e/0x30 [<ffffffff81d07ac7>] bus_add_driver+0x117/0x250 (cherry picked from commit 6f4e43a2f771b737d991142ec4f6d4b7ff31fbb4) | |||||
| CVE-2024-44984 | 1 Linux | 1 Linux Kernel | 2024-10-10 | N/A | 5.5 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: bnxt_en: Fix double DMA unmapping for XDP_REDIRECT Remove the dma_unmap_page_attrs() call in the driver's XDP_REDIRECT code path. This should have been removed when we let the page pool handle the DMA mapping. This bug causes the warning: WARNING: CPU: 7 PID: 59 at drivers/iommu/dma-iommu.c:1198 iommu_dma_unmap_page+0xd5/0x100 CPU: 7 PID: 59 Comm: ksoftirqd/7 Tainted: G W 6.8.0-1010-gcp #11-Ubuntu Hardware name: Dell Inc. PowerEdge R7525/0PYVT1, BIOS 2.15.2 04/02/2024 RIP: 0010:iommu_dma_unmap_page+0xd5/0x100 Code: 89 ee 48 89 df e8 cb f2 69 ff 48 83 c4 08 5b 41 5c 41 5d 41 5e 41 5f 5d 31 c0 31 d2 31 c9 31 f6 31 ff 45 31 c0 e9 ab 17 71 00 <0f> 0b 48 83 c4 08 5b 41 5c 41 5d 41 5e 41 5f 5d 31 c0 31 d2 31 c9 RSP: 0018:ffffab1fc0597a48 EFLAGS: 00010246 RAX: 0000000000000000 RBX: ffff99ff838280c8 RCX: 0000000000000000 RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000000 RBP: ffffab1fc0597a78 R08: 0000000000000002 R09: ffffab1fc0597c1c R10: ffffab1fc0597cd3 R11: ffff99ffe375acd8 R12: 00000000e65b9000 R13: 0000000000000050 R14: 0000000000001000 R15: 0000000000000002 FS: 0000000000000000(0000) GS:ffff9a06efb80000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000565c34c37210 CR3: 00000005c7e3e000 CR4: 0000000000350ef0 ? show_regs+0x6d/0x80 ? __warn+0x89/0x150 ? iommu_dma_unmap_page+0xd5/0x100 ? report_bug+0x16a/0x190 ? handle_bug+0x51/0xa0 ? exc_invalid_op+0x18/0x80 ? iommu_dma_unmap_page+0xd5/0x100 ? iommu_dma_unmap_page+0x35/0x100 dma_unmap_page_attrs+0x55/0x220 ? bpf_prog_4d7e87c0d30db711_xdp_dispatcher+0x64/0x9f bnxt_rx_xdp+0x237/0x520 [bnxt_en] bnxt_rx_pkt+0x640/0xdd0 [bnxt_en] __bnxt_poll_work+0x1a1/0x3d0 [bnxt_en] bnxt_poll+0xaa/0x1e0 [bnxt_en] __napi_poll+0x33/0x1e0 net_rx_action+0x18a/0x2f0 | |||||
| CVE-2024-44994 | 1 Linux | 1 Linux Kernel | 2024-10-10 | N/A | 5.5 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: iommu: Restore lost return in iommu_report_device_fault() When iommu_report_device_fault gets called with a partial fault it is supposed to collect the fault into the group and then return. Instead the return was accidently deleted which results in trying to process the fault and an eventual crash. Deleting the return was a typo, put it back. | |||||
| CVE-2024-46834 | 1 Linux | 1 Linux Kernel | 2024-10-09 | N/A | 5.5 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: ethtool: fail closed if we can't get max channel used in indirection tables Commit 0d1b7d6c9274 ("bnxt: fix crashes when reducing ring count with active RSS contexts") proves that allowing indirection table to contain channels with out of bounds IDs may lead to crashes. Currently the max channel check in the core gets skipped if driver can't fetch the indirection table or when we can't allocate memory. Both of those conditions should be extremely rare but if they do happen we should try to be safe and fail the channel change. | |||||
| CVE-2024-46833 | 1 Linux | 1 Linux Kernel | 2024-10-09 | N/A | 7.8 HIGH |
| In the Linux kernel, the following vulnerability has been resolved: net: hns3: void array out of bound when loop tnl_num When query reg inf of SSU, it loops tnl_num times. However, tnl_num comes from hardware and the length of array is a fixed value. To void array out of bound, make sure the loop time is not greater than the length of array | |||||
