Vulnerabilities (CVE)

Filtered by vendor Linux Subscribe
Total 12283 CVE
CVE Vendors Products Updated CVSS v2 CVSS v3
CVE-2025-21655 1 Linux 1 Linux Kernel 2025-11-03 N/A 4.7 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: io_uring/eventfd: ensure io_eventfd_signal() defers another RCU period io_eventfd_do_signal() is invoked from an RCU callback, but when dropping the reference to the io_ev_fd, it calls io_eventfd_free() directly if the refcount drops to zero. This isn't correct, as any potential freeing of the io_ev_fd should be deferred another RCU grace period. Just call io_eventfd_put() rather than open-code the dec-and-test and free, which will correctly defer it another RCU grace period.
CVE-2025-21653 1 Linux 1 Linux Kernel 2025-11-03 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: net_sched: cls_flow: validate TCA_FLOW_RSHIFT attribute syzbot found that TCA_FLOW_RSHIFT attribute was not validated. Right shitfing a 32bit integer is undefined for large shift values. UBSAN: shift-out-of-bounds in net/sched/cls_flow.c:329:23 shift exponent 9445 is too large for 32-bit type 'u32' (aka 'unsigned int') CPU: 1 UID: 0 PID: 54 Comm: kworker/u8:3 Not tainted 6.13.0-rc3-syzkaller-00180-g4f619d518db9 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/13/2024 Workqueue: ipv6_addrconf addrconf_dad_work Call Trace: <TASK> __dump_stack lib/dump_stack.c:94 [inline] dump_stack_lvl+0x241/0x360 lib/dump_stack.c:120 ubsan_epilogue lib/ubsan.c:231 [inline] __ubsan_handle_shift_out_of_bounds+0x3c8/0x420 lib/ubsan.c:468 flow_classify+0x24d5/0x25b0 net/sched/cls_flow.c:329 tc_classify include/net/tc_wrapper.h:197 [inline] __tcf_classify net/sched/cls_api.c:1771 [inline] tcf_classify+0x420/0x1160 net/sched/cls_api.c:1867 sfb_classify net/sched/sch_sfb.c:260 [inline] sfb_enqueue+0x3ad/0x18b0 net/sched/sch_sfb.c:318 dev_qdisc_enqueue+0x4b/0x290 net/core/dev.c:3793 __dev_xmit_skb net/core/dev.c:3889 [inline] __dev_queue_xmit+0xf0e/0x3f50 net/core/dev.c:4400 dev_queue_xmit include/linux/netdevice.h:3168 [inline] neigh_hh_output include/net/neighbour.h:523 [inline] neigh_output include/net/neighbour.h:537 [inline] ip_finish_output2+0xd41/0x1390 net/ipv4/ip_output.c:236 iptunnel_xmit+0x55d/0x9b0 net/ipv4/ip_tunnel_core.c:82 udp_tunnel_xmit_skb+0x262/0x3b0 net/ipv4/udp_tunnel_core.c:173 geneve_xmit_skb drivers/net/geneve.c:916 [inline] geneve_xmit+0x21dc/0x2d00 drivers/net/geneve.c:1039 __netdev_start_xmit include/linux/netdevice.h:5002 [inline] netdev_start_xmit include/linux/netdevice.h:5011 [inline] xmit_one net/core/dev.c:3590 [inline] dev_hard_start_xmit+0x27a/0x7d0 net/core/dev.c:3606 __dev_queue_xmit+0x1b73/0x3f50 net/core/dev.c:4434
CVE-2025-21648 1 Linux 1 Linux Kernel 2025-11-03 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: netfilter: conntrack: clamp maximum hashtable size to INT_MAX Use INT_MAX as maximum size for the conntrack hashtable. Otherwise, it is possible to hit WARN_ON_ONCE in __kvmalloc_node_noprof() when resizing hashtable because __GFP_NOWARN is unset. See: 0708a0afe291 ("mm: Consider __GFP_NOWARN flag for oversized kvmalloc() calls") Note: hashtable resize is only possible from init_netns.
CVE-2025-21647 1 Linux 1 Linux Kernel 2025-11-03 N/A 7.1 HIGH
In the Linux kernel, the following vulnerability has been resolved: sched: sch_cake: add bounds checks to host bulk flow fairness counts Even though we fixed a logic error in the commit cited below, syzbot still managed to trigger an underflow of the per-host bulk flow counters, leading to an out of bounds memory access. To avoid any such logic errors causing out of bounds memory accesses, this commit factors out all accesses to the per-host bulk flow counters to a series of helpers that perform bounds-checking before any increments and decrements. This also has the benefit of improving readability by moving the conditional checks for the flow mode into these helpers, instead of having them spread out throughout the code (which was the cause of the original logic error). As part of this change, the flow quantum calculation is consolidated into a helper function, which means that the dithering applied to the ost load scaling is now applied both in the DRR rotation and when a sparse flow's quantum is first initiated. The only user-visible effect of this is that the maximum packet size that can be sent while a flow stays sparse will now vary with +/- one byte in some cases. This should not make a noticeable difference in practice, and thus it's not worth complicating the code to preserve the old behaviour.
CVE-2025-21646 1 Linux 1 Linux Kernel 2025-11-03 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: afs: Fix the maximum cell name length The kafs filesystem limits the maximum length of a cell to 256 bytes, but a problem occurs if someone actually does that: kafs tries to create a directory under /proc/net/afs/ with the name of the cell, but that fails with a warning: WARNING: CPU: 0 PID: 9 at fs/proc/generic.c:405 because procfs limits the maximum filename length to 255. However, the DNS limits the maximum lookup length and, by extension, the maximum cell name, to 255 less two (length count and trailing NUL). Fix this by limiting the maximum acceptable cellname length to 253. This also allows us to be sure we can create the "/afs/.<cell>/" mountpoint too. Further, split the YFS VL record cell name maximum to be the 256 allowed by the protocol and ignore the record retrieved by YFSVL.GetCellName if it exceeds 253.
CVE-2025-21640 1 Linux 1 Linux Kernel 2025-11-03 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: sctp: sysctl: cookie_hmac_alg: avoid using current->nsproxy As mentioned in a previous commit of this series, using the 'net' structure via 'current' is not recommended for different reasons: - Inconsistency: getting info from the reader's/writer's netns vs only from the opener's netns. - current->nsproxy can be NULL in some cases, resulting in an 'Oops' (null-ptr-deref), e.g. when the current task is exiting, as spotted by syzbot [1] using acct(2). The 'net' structure can be obtained from the table->data using container_of(). Note that table->data could also be used directly, as this is the only member needed from the 'net' structure, but that would increase the size of this fix, to use '*data' everywhere 'net->sctp.sctp_hmac_alg' is used.
CVE-2025-21639 1 Linux 1 Linux Kernel 2025-11-03 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: sctp: sysctl: rto_min/max: avoid using current->nsproxy As mentioned in a previous commit of this series, using the 'net' structure via 'current' is not recommended for different reasons: - Inconsistency: getting info from the reader's/writer's netns vs only from the opener's netns. - current->nsproxy can be NULL in some cases, resulting in an 'Oops' (null-ptr-deref), e.g. when the current task is exiting, as spotted by syzbot [1] using acct(2). The 'net' structure can be obtained from the table->data using container_of(). Note that table->data could also be used directly, as this is the only member needed from the 'net' structure, but that would increase the size of this fix, to use '*data' everywhere 'net->sctp.rto_min/max' is used.
CVE-2025-21638 1 Linux 1 Linux Kernel 2025-11-03 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: sctp: sysctl: auth_enable: avoid using current->nsproxy As mentioned in a previous commit of this series, using the 'net' structure via 'current' is not recommended for different reasons: - Inconsistency: getting info from the reader's/writer's netns vs only from the opener's netns. - current->nsproxy can be NULL in some cases, resulting in an 'Oops' (null-ptr-deref), e.g. when the current task is exiting, as spotted by syzbot [1] using acct(2). The 'net' structure can be obtained from the table->data using container_of(). Note that table->data could also be used directly, but that would increase the size of this fix, while 'sctp.ctl_sock' still needs to be retrieved from 'net' structure.
CVE-2025-21637 1 Linux 1 Linux Kernel 2025-11-03 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: sctp: sysctl: udp_port: avoid using current->nsproxy As mentioned in a previous commit of this series, using the 'net' structure via 'current' is not recommended for different reasons: - Inconsistency: getting info from the reader's/writer's netns vs only from the opener's netns. - current->nsproxy can be NULL in some cases, resulting in an 'Oops' (null-ptr-deref), e.g. when the current task is exiting, as spotted by syzbot [1] using acct(2). The 'net' structure can be obtained from the table->data using container_of(). Note that table->data could also be used directly, but that would increase the size of this fix, while 'sctp.ctl_sock' still needs to be retrieved from 'net' structure.
CVE-2025-21636 1 Linux 1 Linux Kernel 2025-11-03 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: sctp: sysctl: plpmtud_probe_interval: avoid using current->nsproxy As mentioned in a previous commit of this series, using the 'net' structure via 'current' is not recommended for different reasons: - Inconsistency: getting info from the reader's/writer's netns vs only from the opener's netns. - current->nsproxy can be NULL in some cases, resulting in an 'Oops' (null-ptr-deref), e.g. when the current task is exiting, as spotted by syzbot [1] using acct(2). The 'net' structure can be obtained from the table->data using container_of(). Note that table->data could also be used directly, as this is the only member needed from the 'net' structure, but that would increase the size of this fix, to use '*data' everywhere 'net->sctp.probe_interval' is used.
CVE-2025-21631 1 Linux 1 Linux Kernel 2025-11-03 N/A 7.8 HIGH
In the Linux kernel, the following vulnerability has been resolved: block, bfq: fix waker_bfqq UAF after bfq_split_bfqq() Our syzkaller report a following UAF for v6.6: BUG: KASAN: slab-use-after-free in bfq_init_rq+0x175d/0x17a0 block/bfq-iosched.c:6958 Read of size 8 at addr ffff8881b57147d8 by task fsstress/232726 CPU: 2 PID: 232726 Comm: fsstress Not tainted 6.6.0-g3629d1885222 #39 Call Trace: <TASK> __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0x91/0xf0 lib/dump_stack.c:106 print_address_description.constprop.0+0x66/0x300 mm/kasan/report.c:364 print_report+0x3e/0x70 mm/kasan/report.c:475 kasan_report+0xb8/0xf0 mm/kasan/report.c:588 hlist_add_head include/linux/list.h:1023 [inline] bfq_init_rq+0x175d/0x17a0 block/bfq-iosched.c:6958 bfq_insert_request.isra.0+0xe8/0xa20 block/bfq-iosched.c:6271 bfq_insert_requests+0x27f/0x390 block/bfq-iosched.c:6323 blk_mq_insert_request+0x290/0x8f0 block/blk-mq.c:2660 blk_mq_submit_bio+0x1021/0x15e0 block/blk-mq.c:3143 __submit_bio+0xa0/0x6b0 block/blk-core.c:639 __submit_bio_noacct_mq block/blk-core.c:718 [inline] submit_bio_noacct_nocheck+0x5b7/0x810 block/blk-core.c:747 submit_bio_noacct+0xca0/0x1990 block/blk-core.c:847 __ext4_read_bh fs/ext4/super.c:205 [inline] ext4_read_bh+0x15e/0x2e0 fs/ext4/super.c:230 __read_extent_tree_block+0x304/0x6f0 fs/ext4/extents.c:567 ext4_find_extent+0x479/0xd20 fs/ext4/extents.c:947 ext4_ext_map_blocks+0x1a3/0x2680 fs/ext4/extents.c:4182 ext4_map_blocks+0x929/0x15a0 fs/ext4/inode.c:660 ext4_iomap_begin_report+0x298/0x480 fs/ext4/inode.c:3569 iomap_iter+0x3dd/0x1010 fs/iomap/iter.c:91 iomap_fiemap+0x1f4/0x360 fs/iomap/fiemap.c:80 ext4_fiemap+0x181/0x210 fs/ext4/extents.c:5051 ioctl_fiemap.isra.0+0x1b4/0x290 fs/ioctl.c:220 do_vfs_ioctl+0x31c/0x11a0 fs/ioctl.c:811 __do_sys_ioctl fs/ioctl.c:869 [inline] __se_sys_ioctl+0xae/0x190 fs/ioctl.c:857 do_syscall_x64 arch/x86/entry/common.c:51 [inline] do_syscall_64+0x70/0x120 arch/x86/entry/common.c:81 entry_SYSCALL_64_after_hwframe+0x78/0xe2 Allocated by task 232719: kasan_save_stack+0x22/0x50 mm/kasan/common.c:45 kasan_set_track+0x25/0x30 mm/kasan/common.c:52 __kasan_slab_alloc+0x87/0x90 mm/kasan/common.c:328 kasan_slab_alloc include/linux/kasan.h:188 [inline] slab_post_alloc_hook mm/slab.h:768 [inline] slab_alloc_node mm/slub.c:3492 [inline] kmem_cache_alloc_node+0x1b8/0x6f0 mm/slub.c:3537 bfq_get_queue+0x215/0x1f00 block/bfq-iosched.c:5869 bfq_get_bfqq_handle_split+0x167/0x5f0 block/bfq-iosched.c:6776 bfq_init_rq+0x13a4/0x17a0 block/bfq-iosched.c:6938 bfq_insert_request.isra.0+0xe8/0xa20 block/bfq-iosched.c:6271 bfq_insert_requests+0x27f/0x390 block/bfq-iosched.c:6323 blk_mq_insert_request+0x290/0x8f0 block/blk-mq.c:2660 blk_mq_submit_bio+0x1021/0x15e0 block/blk-mq.c:3143 __submit_bio+0xa0/0x6b0 block/blk-core.c:639 __submit_bio_noacct_mq block/blk-core.c:718 [inline] submit_bio_noacct_nocheck+0x5b7/0x810 block/blk-core.c:747 submit_bio_noacct+0xca0/0x1990 block/blk-core.c:847 __ext4_read_bh fs/ext4/super.c:205 [inline] ext4_read_bh_nowait+0x15a/0x240 fs/ext4/super.c:217 ext4_read_bh_lock+0xac/0xd0 fs/ext4/super.c:242 ext4_bread_batch+0x268/0x500 fs/ext4/inode.c:958 __ext4_find_entry+0x448/0x10f0 fs/ext4/namei.c:1671 ext4_lookup_entry fs/ext4/namei.c:1774 [inline] ext4_lookup.part.0+0x359/0x6f0 fs/ext4/namei.c:1842 ext4_lookup+0x72/0x90 fs/ext4/namei.c:1839 __lookup_slow+0x257/0x480 fs/namei.c:1696 lookup_slow fs/namei.c:1713 [inline] walk_component+0x454/0x5c0 fs/namei.c:2004 link_path_walk.part.0+0x773/0xda0 fs/namei.c:2331 link_path_walk fs/namei.c:3826 [inline] path_openat+0x1b9/0x520 fs/namei.c:3826 do_filp_open+0x1b7/0x400 fs/namei.c:3857 do_sys_openat2+0x5dc/0x6e0 fs/open.c:1428 do_sys_open fs/open.c:1443 [inline] __do_sys_openat fs/open.c:1459 [inline] __se_sys_openat fs/open.c:1454 [inline] __x64_sys_openat+0x148/0x200 fs/open.c:1454 do_syscall_x64 arch/x86/entry/common.c:51 [inline] do_syscall_6 ---truncated---
CVE-2025-21629 1 Linux 1 Linux Kernel 2025-11-03 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: net: reenable NETIF_F_IPV6_CSUM offload for BIG TCP packets The blamed commit disabled hardware offoad of IPv6 packets with extension headers on devices that advertise NETIF_F_IPV6_CSUM, based on the definition of that feature in skbuff.h: * * - %NETIF_F_IPV6_CSUM * - Driver (device) is only able to checksum plain * TCP or UDP packets over IPv6. These are specifically * unencapsulated packets of the form IPv6|TCP or * IPv6|UDP where the Next Header field in the IPv6 * header is either TCP or UDP. IPv6 extension headers * are not supported with this feature. This feature * cannot be set in features for a device with * NETIF_F_HW_CSUM also set. This feature is being * DEPRECATED (see below). The change causes skb_warn_bad_offload to fire for BIG TCP packets. [ 496.310233] WARNING: CPU: 13 PID: 23472 at net/core/dev.c:3129 skb_warn_bad_offload+0xc4/0xe0 [ 496.310297] ? skb_warn_bad_offload+0xc4/0xe0 [ 496.310300] skb_checksum_help+0x129/0x1f0 [ 496.310303] skb_csum_hwoffload_help+0x150/0x1b0 [ 496.310306] validate_xmit_skb+0x159/0x270 [ 496.310309] validate_xmit_skb_list+0x41/0x70 [ 496.310312] sch_direct_xmit+0x5c/0x250 [ 496.310317] __qdisc_run+0x388/0x620 BIG TCP introduced an IPV6_TLV_JUMBO IPv6 extension header to communicate packet length, as this is an IPv6 jumbogram. But, the feature is only enabled on devices that support BIG TCP TSO. The header is only present for PF_PACKET taps like tcpdump, and not transmitted by physical devices. For this specific case of extension headers that are not transmitted, return to the situation before the blamed commit and support hardware offload. ipv6_has_hopopt_jumbo() tests not only whether this header is present, but also that it is the only extension header before a terminal (L4) header.
CVE-2024-57951 1 Linux 1 Linux Kernel 2025-11-03 N/A 7.8 HIGH
In the Linux kernel, the following vulnerability has been resolved: hrtimers: Handle CPU state correctly on hotplug Consider a scenario where a CPU transitions from CPUHP_ONLINE to halfway through a CPU hotunplug down to CPUHP_HRTIMERS_PREPARE, and then back to CPUHP_ONLINE: Since hrtimers_prepare_cpu() does not run, cpu_base.hres_active remains set to 1 throughout. However, during a CPU unplug operation, the tick and the clockevents are shut down at CPUHP_AP_TICK_DYING. On return to the online state, for instance CFS incorrectly assumes that the hrtick is already active, and the chance of the clockevent device to transition to oneshot mode is also lost forever for the CPU, unless it goes back to a lower state than CPUHP_HRTIMERS_PREPARE once. This round-trip reveals another issue; cpu_base.online is not set to 1 after the transition, which appears as a WARN_ON_ONCE in enqueue_hrtimer(). Aside of that, the bulk of the per CPU state is not reset either, which means there are dangling pointers in the worst case. Address this by adding a corresponding startup() callback, which resets the stale per CPU state and sets the online flag. [ tglx: Make the new callback unconditionally available, remove the online modification in the prepare() callback and clear the remaining state in the starting callback instead of the prepare callback ]
CVE-2024-57949 1 Linux 1 Linux Kernel 2025-11-03 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: irqchip/gic-v3-its: Don't enable interrupts in its_irq_set_vcpu_affinity() The following call-chain leads to enabling interrupts in a nested interrupt disabled section: irq_set_vcpu_affinity() irq_get_desc_lock() raw_spin_lock_irqsave() <--- Disable interrupts its_irq_set_vcpu_affinity() guard(raw_spinlock_irq) <--- Enables interrupts when leaving the guard() irq_put_desc_unlock() <--- Warns because interrupts are enabled This was broken in commit b97e8a2f7130, which replaced the original raw_spin_[un]lock() pair with guard(raw_spinlock_irq). Fix the issue by using guard(raw_spinlock). [ tglx: Massaged change log ]
CVE-2024-57948 1 Linux 1 Linux Kernel 2025-11-03 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: mac802154: check local interfaces before deleting sdata list syzkaller reported a corrupted list in ieee802154_if_remove. [1] Remove an IEEE 802.15.4 network interface after unregister an IEEE 802.15.4 hardware device from the system. CPU0 CPU1 ==== ==== genl_family_rcv_msg_doit ieee802154_unregister_hw ieee802154_del_iface ieee802154_remove_interfaces rdev_del_virtual_intf_deprecated list_del(&sdata->list) ieee802154_if_remove list_del_rcu The net device has been unregistered, since the rcu grace period, unregistration must be run before ieee802154_if_remove. To avoid this issue, add a check for local->interfaces before deleting sdata list. [1] kernel BUG at lib/list_debug.c:58! Oops: invalid opcode: 0000 [#1] PREEMPT SMP KASAN PTI CPU: 0 UID: 0 PID: 6277 Comm: syz-executor157 Not tainted 6.12.0-rc6-syzkaller-00005-g557329bcecc2 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/13/2024 RIP: 0010:__list_del_entry_valid_or_report+0xf4/0x140 lib/list_debug.c:56 Code: e8 a1 7e 00 07 90 0f 0b 48 c7 c7 e0 37 60 8c 4c 89 fe e8 8f 7e 00 07 90 0f 0b 48 c7 c7 40 38 60 8c 4c 89 fe e8 7d 7e 00 07 90 <0f> 0b 48 c7 c7 a0 38 60 8c 4c 89 fe e8 6b 7e 00 07 90 0f 0b 48 c7 RSP: 0018:ffffc9000490f3d0 EFLAGS: 00010246 RAX: 000000000000004e RBX: dead000000000122 RCX: d211eee56bb28d00 RDX: 0000000000000000 RSI: 0000000080000000 RDI: 0000000000000000 RBP: ffff88805b278dd8 R08: ffffffff8174a12c R09: 1ffffffff2852f0d R10: dffffc0000000000 R11: fffffbfff2852f0e R12: dffffc0000000000 R13: dffffc0000000000 R14: dead000000000100 R15: ffff88805b278cc0 FS: 0000555572f94380(0000) GS:ffff8880b8600000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 000056262e4a3000 CR3: 0000000078496000 CR4: 00000000003526f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> __list_del_entry_valid include/linux/list.h:124 [inline] __list_del_entry include/linux/list.h:215 [inline] list_del_rcu include/linux/rculist.h:157 [inline] ieee802154_if_remove+0x86/0x1e0 net/mac802154/iface.c:687 rdev_del_virtual_intf_deprecated net/ieee802154/rdev-ops.h:24 [inline] ieee802154_del_iface+0x2c0/0x5c0 net/ieee802154/nl-phy.c:323 genl_family_rcv_msg_doit net/netlink/genetlink.c:1115 [inline] genl_family_rcv_msg net/netlink/genetlink.c:1195 [inline] genl_rcv_msg+0xb14/0xec0 net/netlink/genetlink.c:1210 netlink_rcv_skb+0x1e3/0x430 net/netlink/af_netlink.c:2551 genl_rcv+0x28/0x40 net/netlink/genetlink.c:1219 netlink_unicast_kernel net/netlink/af_netlink.c:1331 [inline] netlink_unicast+0x7f6/0x990 net/netlink/af_netlink.c:1357 netlink_sendmsg+0x8e4/0xcb0 net/netlink/af_netlink.c:1901 sock_sendmsg_nosec net/socket.c:729 [inline] __sock_sendmsg+0x221/0x270 net/socket.c:744 ____sys_sendmsg+0x52a/0x7e0 net/socket.c:2607 ___sys_sendmsg net/socket.c:2661 [inline] __sys_sendmsg+0x292/0x380 net/socket.c:2690 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f
CVE-2024-57946 1 Linux 1 Linux Kernel 2025-11-03 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: virtio-blk: don't keep queue frozen during system suspend Commit 4ce6e2db00de ("virtio-blk: Ensure no requests in virtqueues before deleting vqs.") replaces queue quiesce with queue freeze in virtio-blk's PM callbacks. And the motivation is to drain inflight IOs before suspending. block layer's queue freeze looks very handy, but it is also easy to cause deadlock, such as, any attempt to call into bio_queue_enter() may run into deadlock if the queue is frozen in current context. There are all kinds of ->suspend() called in suspend context, so keeping queue frozen in the whole suspend context isn't one good idea. And Marek reported lockdep warning[1] caused by virtio-blk's freeze queue in virtblk_freeze(). [1] https://lore.kernel.org/linux-block/ca16370e-d646-4eee-b9cc-87277c89c43c@samsung.com/ Given the motivation is to drain in-flight IOs, it can be done by calling freeze & unfreeze, meantime restore to previous behavior by keeping queue quiesced during suspend.
CVE-2024-57940 1 Linux 1 Linux Kernel 2025-11-03 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: exfat: fix the infinite loop in exfat_readdir() If the file system is corrupted so that a cluster is linked to itself in the cluster chain, and there is an unused directory entry in the cluster, 'dentry' will not be incremented, causing condition 'dentry < max_dentries' unable to prevent an infinite loop. This infinite loop causes s_lock not to be released, and other tasks will hang, such as exfat_sync_fs(). This commit stops traversing the cluster chain when there is unused directory entry in the cluster to avoid this infinite loop.
CVE-2024-57939 1 Linux 1 Linux Kernel 2025-11-03 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: riscv: Fix sleeping in invalid context in die() die() can be called in exception handler, and therefore cannot sleep. However, die() takes spinlock_t which can sleep with PREEMPT_RT enabled. That causes the following warning: BUG: sleeping function called from invalid context at kernel/locking/spinlock_rt.c:48 in_atomic(): 1, irqs_disabled(): 1, non_block: 0, pid: 285, name: mutex preempt_count: 110001, expected: 0 RCU nest depth: 0, expected: 0 CPU: 0 UID: 0 PID: 285 Comm: mutex Not tainted 6.12.0-rc7-00022-ge19049cf7d56-dirty #234 Hardware name: riscv-virtio,qemu (DT) Call Trace: dump_backtrace+0x1c/0x24 show_stack+0x2c/0x38 dump_stack_lvl+0x5a/0x72 dump_stack+0x14/0x1c __might_resched+0x130/0x13a rt_spin_lock+0x2a/0x5c die+0x24/0x112 do_trap_insn_illegal+0xa0/0xea _new_vmalloc_restore_context_a0+0xcc/0xd8 Oops - illegal instruction [#1] Switch to use raw_spinlock_t, which does not sleep even with PREEMPT_RT enabled.
CVE-2024-57938 1 Linux 1 Linux Kernel 2025-11-03 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: net/sctp: Prevent autoclose integer overflow in sctp_association_init() While by default max_autoclose equals to INT_MAX / HZ, one may set net.sctp.max_autoclose to UINT_MAX. There is code in sctp_association_init() that can consequently trigger overflow.
CVE-2024-57931 1 Linux 1 Linux Kernel 2025-11-03 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: selinux: ignore unknown extended permissions When evaluating extended permissions, ignore unknown permissions instead of calling BUG(). This commit ensures that future permissions can be added without interfering with older kernels.