Filtered by vendor Linux
Subscribe
Total
14867 CVE
| CVE | Vendors | Products | Updated | CVSS v2 | CVSS v3 |
|---|---|---|---|---|---|
| CVE-2022-49669 | 1 Linux | 1 Linux Kernel | 2025-03-24 | N/A | 7.8 HIGH |
| In the Linux kernel, the following vulnerability has been resolved: mptcp: fix race on unaccepted mptcp sockets When the listener socket owning the relevant request is closed, it frees the unaccepted subflows and that causes later deletion of the paired MPTCP sockets. The mptcp socket's worker can run in the time interval between such delete operations. When that happens, any access to msk->first will cause an UaF access, as the subflow cleanup did not cleared such field in the mptcp socket. Address the issue explicitly traversing the listener socket accept queue at close time and performing the needed cleanup on the pending msk. Note that the locking is a bit tricky, as we need to acquire the msk socket lock, while still owning the subflow socket one. | |||||
| CVE-2022-49667 | 1 Linux | 1 Linux Kernel | 2025-03-24 | N/A | 7.8 HIGH |
| In the Linux kernel, the following vulnerability has been resolved: net: bonding: fix use-after-free after 802.3ad slave unbind commit 0622cab0341c ("bonding: fix 802.3ad aggregator reselection"), resolve case, when there is several aggregation groups in the same bond. bond_3ad_unbind_slave will invalidate (clear) aggregator when __agg_active_ports return zero. So, ad_clear_agg can be executed even, when num_of_ports!=0. Than bond_3ad_unbind_slave can be executed again for, previously cleared aggregator. NOTE: at this time bond_3ad_unbind_slave will not update slave ports list, because lag_ports==NULL. So, here we got slave ports, pointing to freed aggregator memory. Fix with checking actual number of ports in group (as was before commit 0622cab0341c ("bonding: fix 802.3ad aggregator reselection") ), before ad_clear_agg(). The KASAN logs are as follows: [ 767.617392] ================================================================== [ 767.630776] BUG: KASAN: use-after-free in bond_3ad_state_machine_handler+0x13dc/0x1470 [ 767.638764] Read of size 2 at addr ffff00011ba9d430 by task kworker/u8:7/767 [ 767.647361] CPU: 3 PID: 767 Comm: kworker/u8:7 Tainted: G O 5.15.11 #15 [ 767.655329] Hardware name: DNI AmazonGo1 A7040 board (DT) [ 767.660760] Workqueue: lacp_1 bond_3ad_state_machine_handler [ 767.666468] Call trace: [ 767.668930] dump_backtrace+0x0/0x2d0 [ 767.672625] show_stack+0x24/0x30 [ 767.675965] dump_stack_lvl+0x68/0x84 [ 767.679659] print_address_description.constprop.0+0x74/0x2b8 [ 767.685451] kasan_report+0x1f0/0x260 [ 767.689148] __asan_load2+0x94/0xd0 [ 767.692667] bond_3ad_state_machine_handler+0x13dc/0x1470 | |||||
| CVE-2022-49651 | 1 Linux | 1 Linux Kernel | 2025-03-24 | N/A | 7.8 HIGH |
| In the Linux kernel, the following vulnerability has been resolved: srcu: Tighten cleanup_srcu_struct() GP checks Currently, cleanup_srcu_struct() checks for a grace period in progress, but it does not check for a grace period that has not yet started but which might start at any time. Such a situation could result in a use-after-free bug, so this commit adds a check for a grace period that is needed but not yet started to cleanup_srcu_struct(). | |||||
| CVE-2022-49647 | 1 Linux | 1 Linux Kernel | 2025-03-24 | N/A | 7.8 HIGH |
| In the Linux kernel, the following vulnerability has been resolved: cgroup: Use separate src/dst nodes when preloading css_sets for migration Each cset (css_set) is pinned by its tasks. When we're moving tasks around across csets for a migration, we need to hold the source and destination csets to ensure that they don't go away while we're moving tasks about. This is done by linking cset->mg_preload_node on either the mgctx->preloaded_src_csets or mgctx->preloaded_dst_csets list. Using the same cset->mg_preload_node for both the src and dst lists was deemed okay as a cset can't be both the source and destination at the same time. Unfortunately, this overloading becomes problematic when multiple tasks are involved in a migration and some of them are identity noop migrations while others are actually moving across cgroups. For example, this can happen with the following sequence on cgroup1: #1> mkdir -p /sys/fs/cgroup/misc/a/b #2> echo $$ > /sys/fs/cgroup/misc/a/cgroup.procs #3> RUN_A_COMMAND_WHICH_CREATES_MULTIPLE_THREADS & #4> PID=$! #5> echo $PID > /sys/fs/cgroup/misc/a/b/tasks #6> echo $PID > /sys/fs/cgroup/misc/a/cgroup.procs the process including the group leader back into a. In this final migration, non-leader threads would be doing identity migration while the group leader is doing an actual one. After #3, let's say the whole process was in cset A, and that after #4, the leader moves to cset B. Then, during #6, the following happens: 1. cgroup_migrate_add_src() is called on B for the leader. 2. cgroup_migrate_add_src() is called on A for the other threads. 3. cgroup_migrate_prepare_dst() is called. It scans the src list. 4. It notices that B wants to migrate to A, so it tries to A to the dst list but realizes that its ->mg_preload_node is already busy. 5. and then it notices A wants to migrate to A as it's an identity migration, it culls it by list_del_init()'ing its ->mg_preload_node and putting references accordingly. 6. The rest of migration takes place with B on the src list but nothing on the dst list. This means that A isn't held while migration is in progress. If all tasks leave A before the migration finishes and the incoming task pins it, the cset will be destroyed leading to use-after-free. This is caused by overloading cset->mg_preload_node for both src and dst preload lists. We wanted to exclude the cset from the src list but ended up inadvertently excluding it from the dst list too. This patch fixes the issue by separating out cset->mg_preload_node into ->mg_src_preload_node and ->mg_dst_preload_node, so that the src and dst preloadings don't interfere with each other. | |||||
| CVE-2025-21729 | 1 Linux | 1 Linux Kernel | 2025-03-24 | N/A | 7.8 HIGH |
| In the Linux kernel, the following vulnerability has been resolved: wifi: rtw89: fix race between cancel_hw_scan and hw_scan completion The rtwdev->scanning flag isn't protected by mutex originally, so cancel_hw_scan can pass the condition, but suddenly hw_scan completion unset the flag and calls ieee80211_scan_completed() that will free local->hw_scan_req. Then, cancel_hw_scan raises null-ptr-deref and use-after-free. Fix it by moving the check condition to where protected by mutex. KASAN: null-ptr-deref in range [0x0000000000000088-0x000000000000008f] CPU: 2 PID: 6922 Comm: kworker/2:2 Tainted: G OE Hardware name: LENOVO 2356AD1/2356AD1, BIOS G7ETB6WW (2.76 ) 09/10/2019 Workqueue: events cfg80211_conn_work [cfg80211] RIP: 0010:rtw89_fw_h2c_scan_offload_be+0xc33/0x13c3 [rtw89_core] Code: 00 45 89 6c 24 1c 0f 85 23 01 00 00 48 8b 85 20 ff ff ff 48 8d RSP: 0018:ffff88811fd9f068 EFLAGS: 00010206 RAX: dffffc0000000000 RBX: ffff88811fd9f258 RCX: 0000000000000001 RDX: 0000000000000011 RSI: 0000000000000001 RDI: 0000000000000089 RBP: ffff88811fd9f170 R08: 0000000000000000 R09: 0000000000000000 R10: ffff88811fd9f108 R11: 0000000000000000 R12: ffff88810e47f960 R13: 0000000000000000 R14: 000000000000ffff R15: 0000000000000000 FS: 0000000000000000(0000) GS:ffff8881d6f00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007531dfca55b0 CR3: 00000001be296004 CR4: 00000000001706e0 Call Trace: <TASK> ? show_regs+0x61/0x73 ? __die_body+0x20/0x73 ? die_addr+0x4f/0x7b ? exc_general_protection+0x191/0x1db ? asm_exc_general_protection+0x27/0x30 ? rtw89_fw_h2c_scan_offload_be+0xc33/0x13c3 [rtw89_core] ? rtw89_fw_h2c_scan_offload_be+0x458/0x13c3 [rtw89_core] ? __pfx_rtw89_fw_h2c_scan_offload_be+0x10/0x10 [rtw89_core] ? do_raw_spin_lock+0x75/0xdb ? __pfx_do_raw_spin_lock+0x10/0x10 rtw89_hw_scan_offload+0xb5e/0xbf7 [rtw89_core] ? _raw_spin_unlock+0xe/0x24 ? __mutex_lock.constprop.0+0x40c/0x471 ? __pfx_rtw89_hw_scan_offload+0x10/0x10 [rtw89_core] ? __mutex_lock_slowpath+0x13/0x1f ? mutex_lock+0xa2/0xdc ? __pfx_mutex_lock+0x10/0x10 rtw89_hw_scan_abort+0x58/0xb7 [rtw89_core] rtw89_ops_cancel_hw_scan+0x120/0x13b [rtw89_core] ieee80211_scan_cancel+0x468/0x4d0 [mac80211] ieee80211_prep_connection+0x858/0x899 [mac80211] ieee80211_mgd_auth+0xbea/0xdde [mac80211] ? __pfx_ieee80211_mgd_auth+0x10/0x10 [mac80211] ? cfg80211_find_elem+0x15/0x29 [cfg80211] ? is_bss+0x1b7/0x1d7 [cfg80211] ieee80211_auth+0x18/0x27 [mac80211] cfg80211_mlme_auth+0x3bb/0x3e7 [cfg80211] cfg80211_conn_do_work+0x410/0xb81 [cfg80211] ? __pfx_cfg80211_conn_do_work+0x10/0x10 [cfg80211] ? __kasan_check_read+0x11/0x1f ? psi_group_change+0x8bc/0x944 ? __kasan_check_write+0x14/0x22 ? mutex_lock+0x8e/0xdc ? __pfx_mutex_lock+0x10/0x10 ? __pfx___radix_tree_lookup+0x10/0x10 cfg80211_conn_work+0x245/0x34d [cfg80211] ? __pfx_cfg80211_conn_work+0x10/0x10 [cfg80211] ? update_cfs_rq_load_avg+0x3bc/0x3d7 ? sched_clock_noinstr+0x9/0x1a ? sched_clock+0x10/0x24 ? sched_clock_cpu+0x7e/0x42e ? newidle_balance+0x796/0x937 ? __pfx_sched_clock_cpu+0x10/0x10 ? __pfx_newidle_balance+0x10/0x10 ? __kasan_check_read+0x11/0x1f ? psi_group_change+0x8bc/0x944 ? _raw_spin_unlock+0xe/0x24 ? raw_spin_rq_unlock+0x47/0x54 ? raw_spin_rq_unlock_irq+0x9/0x1f ? finish_task_switch.isra.0+0x347/0x586 ? __schedule+0x27bf/0x2892 ? mutex_unlock+0x80/0xd0 ? do_raw_spin_lock+0x75/0xdb ? __pfx___schedule+0x10/0x10 process_scheduled_works+0x58c/0x821 worker_thread+0x4c7/0x586 ? __kasan_check_read+0x11/0x1f kthread+0x285/0x294 ? __pfx_worker_thread+0x10/0x10 ? __pfx_kthread+0x10/0x10 ret_from_fork+0x29/0x6f ? __pfx_kthread+0x10/0x10 ret_from_fork_asm+0x1b/0x30 </TASK> | |||||
| CVE-2024-49570 | 1 Linux | 1 Linux Kernel | 2025-03-24 | N/A | 7.8 HIGH |
| In the Linux kernel, the following vulnerability has been resolved: drm/xe/tracing: Fix a potential TP_printk UAF The commit afd2627f727b ("tracing: Check "%s" dereference via the field and not the TP_printk format") exposes potential UAFs in the xe_bo_move trace event. Fix those by avoiding dereferencing the xe_mem_type_to_name[] array at TP_printk time. Since some code refactoring has taken place, explicit backporting may be needed for kernels older than 6.10. | |||||
| CVE-2022-48747 | 1 Linux | 1 Linux Kernel | 2025-03-24 | N/A | 7.5 HIGH |
| In the Linux kernel, the following vulnerability has been resolved: block: Fix wrong offset in bio_truncate() bio_truncate() clears the buffer outside of last block of bdev, however current bio_truncate() is using the wrong offset of page. So it can return the uninitialized data. This happened when both of truncated/corrupted FS and userspace (via bdev) are trying to read the last of bdev. | |||||
| CVE-2022-48748 | 1 Linux | 1 Linux Kernel | 2025-03-24 | N/A | 7.5 HIGH |
| In the Linux kernel, the following vulnerability has been resolved: net: bridge: vlan: fix memory leak in __allowed_ingress When using per-vlan state, if vlan snooping and stats are disabled, untagged or priority-tagged ingress frame will go to check pvid state. If the port state is forwarding and the pvid state is not learning/forwarding, untagged or priority-tagged frame will be dropped but skb memory is not freed. Should free skb when __allowed_ingress returns false. | |||||
| CVE-2022-48754 | 1 Linux | 1 Linux Kernel | 2025-03-24 | N/A | 8.4 HIGH |
| In the Linux kernel, the following vulnerability has been resolved: phylib: fix potential use-after-free Commit bafbdd527d56 ("phylib: Add device reset GPIO support") added call to phy_device_reset(phydev) after the put_device() call in phy_detach(). The comment before the put_device() call says that the phydev might go away with put_device(). Fix potential use-after-free by calling phy_device_reset() before put_device(). | |||||
| CVE-2022-48762 | 1 Linux | 1 Linux Kernel | 2025-03-24 | N/A | 6.2 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: arm64: extable: fix load_unaligned_zeropad() reg indices In ex_handler_load_unaligned_zeropad() we erroneously extract the data and addr register indices from ex->type rather than ex->data. As ex->type will contain EX_TYPE_LOAD_UNALIGNED_ZEROPAD (i.e. 4): * We'll always treat X0 as the address register, since EX_DATA_REG_ADDR is extracted from bits [9:5]. Thus, we may attempt to dereference an arbitrary address as X0 may hold an arbitrary value. * We'll always treat X4 as the data register, since EX_DATA_REG_DATA is extracted from bits [4:0]. Thus we will corrupt X4 and cause arbitrary behaviour within load_unaligned_zeropad() and its caller. Fix this by extracting both values from ex->data as originally intended. On an MTE-enabled QEMU image we are hitting the following crash: Unable to handle kernel NULL pointer dereference at virtual address 0000000000000000 Call trace: fixup_exception+0xc4/0x108 __do_kernel_fault+0x3c/0x268 do_tag_check_fault+0x3c/0x104 do_mem_abort+0x44/0xf4 el1_abort+0x40/0x64 el1h_64_sync_handler+0x60/0xa0 el1h_64_sync+0x7c/0x80 link_path_walk+0x150/0x344 path_openat+0xa0/0x7dc do_filp_open+0xb8/0x168 do_sys_openat2+0x88/0x17c __arm64_sys_openat+0x74/0xa0 invoke_syscall+0x48/0x148 el0_svc_common+0xb8/0xf8 do_el0_svc+0x28/0x88 el0_svc+0x24/0x84 el0t_64_sync_handler+0x88/0xec el0t_64_sync+0x1b4/0x1b8 Code: f8695a69 71007d1f 540000e0 927df12a (f940014a) | |||||
| CVE-2022-48764 | 1 Linux | 1 Linux Kernel | 2025-03-24 | N/A | 5.3 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: KVM: x86: Free kvm_cpuid_entry2 array on post-KVM_RUN KVM_SET_CPUID{,2} Free the "struct kvm_cpuid_entry2" array on successful post-KVM_RUN KVM_SET_CPUID{,2} to fix a memory leak, the callers of kvm_set_cpuid() free the array only on failure. BUG: memory leak unreferenced object 0xffff88810963a800 (size 2048): comm "syz-executor025", pid 3610, jiffies 4294944928 (age 8.080s) hex dump (first 32 bytes): 00 00 00 00 00 00 00 00 00 00 00 00 0d 00 00 00 ................ 47 65 6e 75 6e 74 65 6c 69 6e 65 49 00 00 00 00 GenuntelineI.... backtrace: [<ffffffff814948ee>] kmalloc_node include/linux/slab.h:604 [inline] [<ffffffff814948ee>] kvmalloc_node+0x3e/0x100 mm/util.c:580 [<ffffffff814950f2>] kvmalloc include/linux/slab.h:732 [inline] [<ffffffff814950f2>] vmemdup_user+0x22/0x100 mm/util.c:199 [<ffffffff8109f5ff>] kvm_vcpu_ioctl_set_cpuid2+0x8f/0xf0 arch/x86/kvm/cpuid.c:423 [<ffffffff810711b9>] kvm_arch_vcpu_ioctl+0xb99/0x1e60 arch/x86/kvm/x86.c:5251 [<ffffffff8103e92d>] kvm_vcpu_ioctl+0x4ad/0x950 arch/x86/kvm/../../../virt/kvm/kvm_main.c:4066 [<ffffffff815afacc>] vfs_ioctl fs/ioctl.c:51 [inline] [<ffffffff815afacc>] __do_sys_ioctl fs/ioctl.c:874 [inline] [<ffffffff815afacc>] __se_sys_ioctl fs/ioctl.c:860 [inline] [<ffffffff815afacc>] __x64_sys_ioctl+0xfc/0x140 fs/ioctl.c:860 [<ffffffff844a3335>] do_syscall_x64 arch/x86/entry/common.c:50 [inline] [<ffffffff844a3335>] do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80 [<ffffffff84600068>] entry_SYSCALL_64_after_hwframe+0x44/0xae | |||||
| CVE-2023-52883 | 1 Linux | 1 Linux Kernel | 2025-03-24 | N/A | 7.5 HIGH |
| In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: Fix possible null pointer dereference abo->tbo.resource may be NULL in amdgpu_vm_bo_update. | |||||
| CVE-2023-52884 | 1 Linux | 1 Linux Kernel | 2025-03-24 | N/A | 4.4 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: Input: cyapa - add missing input core locking to suspend/resume functions Grab input->mutex during suspend/resume functions like it is done in other input drivers. This fixes the following warning during system suspend/resume cycle on Samsung Exynos5250-based Snow Chromebook: ------------[ cut here ]------------ WARNING: CPU: 1 PID: 1680 at drivers/input/input.c:2291 input_device_enabled+0x68/0x6c Modules linked in: ... CPU: 1 PID: 1680 Comm: kworker/u4:12 Tainted: G W 6.6.0-rc5-next-20231009 #14109 Hardware name: Samsung Exynos (Flattened Device Tree) Workqueue: events_unbound async_run_entry_fn unwind_backtrace from show_stack+0x10/0x14 show_stack from dump_stack_lvl+0x58/0x70 dump_stack_lvl from __warn+0x1a8/0x1cc __warn from warn_slowpath_fmt+0x18c/0x1b4 warn_slowpath_fmt from input_device_enabled+0x68/0x6c input_device_enabled from cyapa_gen3_set_power_mode+0x13c/0x1dc cyapa_gen3_set_power_mode from cyapa_reinitialize+0x10c/0x15c cyapa_reinitialize from cyapa_resume+0x48/0x98 cyapa_resume from dpm_run_callback+0x90/0x298 dpm_run_callback from device_resume+0xb4/0x258 device_resume from async_resume+0x20/0x64 async_resume from async_run_entry_fn+0x40/0x15c async_run_entry_fn from process_scheduled_works+0xbc/0x6a8 process_scheduled_works from worker_thread+0x188/0x454 worker_thread from kthread+0x108/0x140 kthread from ret_from_fork+0x14/0x28 Exception stack(0xf1625fb0 to 0xf1625ff8) ... ---[ end trace 0000000000000000 ]--- ... ------------[ cut here ]------------ WARNING: CPU: 1 PID: 1680 at drivers/input/input.c:2291 input_device_enabled+0x68/0x6c Modules linked in: ... CPU: 1 PID: 1680 Comm: kworker/u4:12 Tainted: G W 6.6.0-rc5-next-20231009 #14109 Hardware name: Samsung Exynos (Flattened Device Tree) Workqueue: events_unbound async_run_entry_fn unwind_backtrace from show_stack+0x10/0x14 show_stack from dump_stack_lvl+0x58/0x70 dump_stack_lvl from __warn+0x1a8/0x1cc __warn from warn_slowpath_fmt+0x18c/0x1b4 warn_slowpath_fmt from input_device_enabled+0x68/0x6c input_device_enabled from cyapa_gen3_set_power_mode+0x13c/0x1dc cyapa_gen3_set_power_mode from cyapa_reinitialize+0x10c/0x15c cyapa_reinitialize from cyapa_resume+0x48/0x98 cyapa_resume from dpm_run_callback+0x90/0x298 dpm_run_callback from device_resume+0xb4/0x258 device_resume from async_resume+0x20/0x64 async_resume from async_run_entry_fn+0x40/0x15c async_run_entry_fn from process_scheduled_works+0xbc/0x6a8 process_scheduled_works from worker_thread+0x188/0x454 worker_thread from kthread+0x108/0x140 kthread from ret_from_fork+0x14/0x28 Exception stack(0xf1625fb0 to 0xf1625ff8) ... ---[ end trace 0000000000000000 ]--- | |||||
| CVE-2024-38623 | 1 Linux | 1 Linux Kernel | 2025-03-24 | N/A | 9.8 CRITICAL |
| In the Linux kernel, the following vulnerability has been resolved: fs/ntfs3: Use variable length array instead of fixed size Should fix smatch warning: ntfs_set_label() error: __builtin_memcpy() 'uni->name' too small (20 vs 256) | |||||
| CVE-2024-38628 | 1 Linux | 1 Linux Kernel | 2025-03-24 | N/A | 5.5 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: usb: gadget: u_audio: Fix race condition use of controls after free during gadget unbind. Hang on to the control IDs instead of pointers since those are correctly handled with locks. | |||||
| CVE-2024-34027 | 1 Linux | 1 Linux Kernel | 2025-03-24 | N/A | 7.0 HIGH |
| In the Linux kernel, the following vulnerability has been resolved: f2fs: compress: fix to cover {reserve,release}_compress_blocks() w/ cp_rwsem lock It needs to cover {reserve,release}_compress_blocks() w/ cp_rwsem lock to avoid racing with checkpoint, otherwise, filesystem metadata including blkaddr in dnode, inode fields and .total_valid_block_count may be corrupted after SPO case. | |||||
| CVE-2025-21714 | 1 Linux | 1 Linux Kernel | 2025-03-24 | N/A | 7.8 HIGH |
| In the Linux kernel, the following vulnerability has been resolved: RDMA/mlx5: Fix implicit ODP use after free Prevent double queueing of implicit ODP mr destroy work by using __xa_cmpxchg() to make sure this is the only time we are destroying this specific mr. Without this change, we could try to invalidate this mr twice, which in turn could result in queuing a MR work destroy twice, and eventually the second work could execute after the MR was freed due to the first work, causing a user after free and trace below. refcount_t: underflow; use-after-free. WARNING: CPU: 2 PID: 12178 at lib/refcount.c:28 refcount_warn_saturate+0x12b/0x130 Modules linked in: bonding ib_ipoib vfio_pci ip_gre geneve nf_tables ip6_gre gre ip6_tunnel tunnel6 ipip tunnel4 ib_umad rdma_ucm mlx5_vfio_pci vfio_pci_core vfio_iommu_type1 mlx5_ib vfio ib_uverbs mlx5_core iptable_raw openvswitch nsh rpcrdma ib_iser libiscsi scsi_transport_iscsi rdma_cm iw_cm ib_cm ib_core xt_conntrack xt_MASQUERADE nf_conntrack_netlink nfnetlink xt_addrtype iptable_nat nf_nat br_netfilter rpcsec_gss_krb5 auth_rpcgss oid_registry overlay zram zsmalloc fuse [last unloaded: ib_uverbs] CPU: 2 PID: 12178 Comm: kworker/u20:5 Not tainted 6.5.0-rc1_net_next_mlx5_58c644e #1 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 Workqueue: events_unbound free_implicit_child_mr_work [mlx5_ib] RIP: 0010:refcount_warn_saturate+0x12b/0x130 Code: 48 c7 c7 38 95 2a 82 c6 05 bc c6 fe 00 01 e8 0c 66 aa ff 0f 0b 5b c3 48 c7 c7 e0 94 2a 82 c6 05 a7 c6 fe 00 01 e8 f5 65 aa ff <0f> 0b 5b c3 90 8b 07 3d 00 00 00 c0 74 12 83 f8 01 74 13 8d 50 ff RSP: 0018:ffff8881008e3e40 EFLAGS: 00010286 RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000027 RDX: ffff88852c91b5c8 RSI: 0000000000000001 RDI: ffff88852c91b5c0 RBP: ffff8881dacd4e00 R08: 00000000ffffffff R09: 0000000000000019 R10: 000000000000072e R11: 0000000063666572 R12: ffff88812bfd9e00 R13: ffff8881c792d200 R14: ffff88810011c005 R15: ffff8881002099c0 FS: 0000000000000000(0000) GS:ffff88852c900000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f5694b5e000 CR3: 00000001153f6003 CR4: 0000000000370ea0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> ? refcount_warn_saturate+0x12b/0x130 free_implicit_child_mr_work+0x180/0x1b0 [mlx5_ib] process_one_work+0x1cc/0x3c0 worker_thread+0x218/0x3c0 kthread+0xc6/0xf0 ret_from_fork+0x1f/0x30 </TASK> | |||||
| CVE-2021-47634 | 1 Linux | 1 Linux Kernel | 2025-03-24 | N/A | 7.8 HIGH |
| In the Linux kernel, the following vulnerability has been resolved: ubi: Fix race condition between ctrl_cdev_ioctl and ubi_cdev_ioctl Hulk Robot reported a KASAN report about use-after-free: ================================================================== BUG: KASAN: use-after-free in __list_del_entry_valid+0x13d/0x160 Read of size 8 at addr ffff888035e37d98 by task ubiattach/1385 [...] Call Trace: klist_dec_and_del+0xa7/0x4a0 klist_put+0xc7/0x1a0 device_del+0x4d4/0xed0 cdev_device_del+0x1a/0x80 ubi_attach_mtd_dev+0x2951/0x34b0 [ubi] ctrl_cdev_ioctl+0x286/0x2f0 [ubi] Allocated by task 1414: device_add+0x60a/0x18b0 cdev_device_add+0x103/0x170 ubi_create_volume+0x1118/0x1a10 [ubi] ubi_cdev_ioctl+0xb7f/0x1ba0 [ubi] Freed by task 1385: cdev_device_del+0x1a/0x80 ubi_remove_volume+0x438/0x6c0 [ubi] ubi_cdev_ioctl+0xbf4/0x1ba0 [ubi] [...] ================================================================== The lock held by ctrl_cdev_ioctl is ubi_devices_mutex, but the lock held by ubi_cdev_ioctl is ubi->device_mutex. Therefore, the two locks can be concurrent. ctrl_cdev_ioctl contains two operations: ubi_attach and ubi_detach. ubi_detach is bug-free because it uses reference counting to prevent concurrency. However, uif_init and uif_close in ubi_attach may race with ubi_cdev_ioctl. uif_init will race with ubi_cdev_ioctl as in the following stack. cpu1 cpu2 cpu3 _______________________|________________________|______________________ ctrl_cdev_ioctl ubi_attach_mtd_dev uif_init ubi_cdev_ioctl ubi_create_volume cdev_device_add ubi_add_volume // sysfs exist kill_volumes ubi_cdev_ioctl ubi_remove_volume cdev_device_del // first free ubi_free_volume cdev_del // double free cdev_device_del And uif_close will race with ubi_cdev_ioctl as in the following stack. cpu1 cpu2 cpu3 _______________________|________________________|______________________ ctrl_cdev_ioctl ubi_attach_mtd_dev uif_init ubi_cdev_ioctl ubi_create_volume cdev_device_add ubi_debugfs_init_dev //error goto out_uif; uif_close kill_volumes ubi_cdev_ioctl ubi_remove_volume cdev_device_del // first free ubi_free_volume // double free The cause of this problem is that commit 714fb87e8bc0 make device "available" before it becomes accessible via sysfs. Therefore, we roll back the modification. We will fix the race condition between ubi device creation and udev by removing ubi_get_device in vol_attribute_show and dev_attribute_show.This avoids accessing uninitialized ubi_devices[ubi_num]. ubi_get_device is used to prevent devices from being deleted during sysfs execution. However, now kernfs ensures that devices will not be deleted before all reference counting are released. The key process is shown in the following stack. device_del device_remove_attrs device_remove_groups sysfs_remove_groups sysfs_remove_group remove_files kernfs_remove_by_name kernfs_remove_by_name_ns __kernfs_remove kernfs_drain | |||||
| CVE-2024-57984 | 1 Linux | 1 Linux Kernel | 2025-03-24 | N/A | 7.8 HIGH |
| In the Linux kernel, the following vulnerability has been resolved: i3c: dw: Fix use-after-free in dw_i3c_master driver due to race condition In dw_i3c_common_probe, &master->hj_work is bound with dw_i3c_hj_work. And dw_i3c_master_irq_handler can call dw_i3c_master_irq_handle_ibis function to start the work. If we remove the module which will call dw_i3c_common_remove to make cleanup, it will free master->base through i3c_master_unregister while the work mentioned above will be used. The sequence of operations that may lead to a UAF bug is as follows: CPU0 CPU1 | dw_i3c_hj_work dw_i3c_common_remove | i3c_master_unregister(&master->base) | device_unregister(&master->dev) | device_release | //free master->base | | i3c_master_do_daa(&master->base) | //use master->base Fix it by ensuring that the work is canceled before proceeding with the cleanup in dw_i3c_common_remove. | |||||
| CVE-2021-47639 | 1 Linux | 1 Linux Kernel | 2025-03-24 | N/A | 7.8 HIGH |
| In the Linux kernel, the following vulnerability has been resolved: KVM: x86/mmu: Zap _all_ roots when unmapping gfn range in TDP MMU Zap both valid and invalid roots when zapping/unmapping a gfn range, as KVM must ensure it holds no references to the freed page after returning from the unmap operation. Most notably, the TDP MMU doesn't zap invalid roots in mmu_notifier callbacks. This leads to use-after-free and other issues if the mmu_notifier runs to completion while an invalid root zapper yields as KVM fails to honor the requirement that there must be _no_ references to the page after the mmu_notifier returns. The bug is most easily reproduced by hacking KVM to cause a collision between set_nx_huge_pages() and kvm_mmu_notifier_release(), but the bug exists between kvm_mmu_notifier_invalidate_range_start() and memslot updates as well. Invalidating a root ensures pages aren't accessible by the guest, and KVM won't read or write page data itself, but KVM will trigger e.g. kvm_set_pfn_dirty() when zapping SPTEs, and thus completing a zap of an invalid root _after_ the mmu_notifier returns is fatal. WARNING: CPU: 24 PID: 1496 at arch/x86/kvm/../../../virt/kvm/kvm_main.c:173 [kvm] RIP: 0010:kvm_is_zone_device_pfn+0x96/0xa0 [kvm] Call Trace: <TASK> kvm_set_pfn_dirty+0xa8/0xe0 [kvm] __handle_changed_spte+0x2ab/0x5e0 [kvm] __handle_changed_spte+0x2ab/0x5e0 [kvm] __handle_changed_spte+0x2ab/0x5e0 [kvm] zap_gfn_range+0x1f3/0x310 [kvm] kvm_tdp_mmu_zap_invalidated_roots+0x50/0x90 [kvm] kvm_mmu_zap_all_fast+0x177/0x1a0 [kvm] set_nx_huge_pages+0xb4/0x190 [kvm] param_attr_store+0x70/0x100 module_attr_store+0x19/0x30 kernfs_fop_write_iter+0x119/0x1b0 new_sync_write+0x11c/0x1b0 vfs_write+0x1cc/0x270 ksys_write+0x5f/0xe0 do_syscall_64+0x38/0xc0 entry_SYSCALL_64_after_hwframe+0x44/0xae </TASK> | |||||
