Vulnerabilities (CVE)

Filtered by vendor Openssl Subscribe
Total 256 CVE
CVE Vendors Products Updated CVSS v2 CVSS v3
CVE-2017-3737 2 Debian, Openssl 2 Debian Linux, Openssl 2025-04-20 4.3 MEDIUM 5.9 MEDIUM
OpenSSL 1.0.2 (starting from version 1.0.2b) introduced an "error state" mechanism. The intent was that if a fatal error occurred during a handshake then OpenSSL would move into the error state and would immediately fail if you attempted to continue the handshake. This works as designed for the explicit handshake functions (SSL_do_handshake(), SSL_accept() and SSL_connect()), however due to a bug it does not work correctly if SSL_read() or SSL_write() is called directly. In that scenario, if the handshake fails then a fatal error will be returned in the initial function call. If SSL_read()/SSL_write() is subsequently called by the application for the same SSL object then it will succeed and the data is passed without being decrypted/encrypted directly from the SSL/TLS record layer. In order to exploit this issue an application bug would have to be present that resulted in a call to SSL_read()/SSL_write() being issued after having already received a fatal error. OpenSSL version 1.0.2b-1.0.2m are affected. Fixed in OpenSSL 1.0.2n. OpenSSL 1.1.0 is not affected.
CVE-2017-3733 2 Hp, Openssl 2 Operations Agent, Openssl 2025-04-20 5.0 MEDIUM 7.5 HIGH
During a renegotiation handshake if the Encrypt-Then-Mac extension is negotiated where it was not in the original handshake (or vice-versa) then this can cause OpenSSL 1.1.0 before 1.1.0e to crash (dependent on ciphersuite). Both clients and servers are affected.
CVE-2017-3735 2 Debian, Openssl 2 Debian Linux, Openssl 2025-04-20 5.0 MEDIUM 5.3 MEDIUM
While parsing an IPAddressFamily extension in an X.509 certificate, it is possible to do a one-byte overread. This would result in an incorrect text display of the certificate. This bug has been present since 2006 and is present in all versions of OpenSSL before 1.0.2m and 1.1.0g.
CVE-2017-3731 2 Nodejs, Openssl 2 Node.js, Openssl 2025-04-20 5.0 MEDIUM 7.5 HIGH
If an SSL/TLS server or client is running on a 32-bit host, and a specific cipher is being used, then a truncated packet can cause that server or client to perform an out-of-bounds read, usually resulting in a crash. For OpenSSL 1.1.0, the crash can be triggered when using CHACHA20/POLY1305; users should upgrade to 1.1.0d. For Openssl 1.0.2, the crash can be triggered when using RC4-MD5; users who have not disabled that algorithm should update to 1.0.2k.
CVE-2016-7055 2 Nodejs, Openssl 2 Node.js, Openssl 2025-04-20 2.6 LOW 5.9 MEDIUM
There is a carry propagating bug in the Broadwell-specific Montgomery multiplication procedure in OpenSSL 1.0.2 and 1.1.0 before 1.1.0c that handles input lengths divisible by, but longer than 256 bits. Analysis suggests that attacks against RSA, DSA and DH private keys are impossible. This is because the subroutine in question is not used in operations with the private key itself and an input of the attacker's direct choice. Otherwise the bug can manifest itself as transient authentication and key negotiation failures or reproducible erroneous outcome of public-key operations with specially crafted input. Among EC algorithms only Brainpool P-512 curves are affected and one presumably can attack ECDH key negotiation. Impact was not analyzed in detail, because pre-requisites for attack are considered unlikely. Namely multiple clients have to choose the curve in question and the server has to share the private key among them, neither of which is default behaviour. Even then only clients that chose the curve will be affected.
CVE-2017-3732 2 Nodejs, Openssl 2 Node.js, Openssl 2025-04-20 4.3 MEDIUM 5.9 MEDIUM
There is a carry propagating bug in the x86_64 Montgomery squaring procedure in OpenSSL 1.0.2 before 1.0.2k and 1.1.0 before 1.1.0d. No EC algorithms are affected. Analysis suggests that attacks against RSA and DSA as a result of this defect would be very difficult to perform and are not believed likely. Attacks against DH are considered just feasible (although very difficult) because most of the work necessary to deduce information about a private key may be performed offline. The amount of resources required for such an attack would be very significant and likely only accessible to a limited number of attackers. An attacker would additionally need online access to an unpatched system using the target private key in a scenario with persistent DH parameters and a private key that is shared between multiple clients. For example this can occur by default in OpenSSL DHE based SSL/TLS ciphersuites. Note: This issue is very similar to CVE-2015-3193 but must be treated as a separate problem.
CVE-2016-7054 1 Openssl 1 Openssl 2025-04-20 5.0 MEDIUM 7.5 HIGH
In OpenSSL 1.1.0 before 1.1.0c, TLS connections using *-CHACHA20-POLY1305 ciphersuites are susceptible to a DoS attack by corrupting larger payloads. This can result in an OpenSSL crash. This issue is not considered to be exploitable beyond a DoS.
CVE-2017-3730 2 Openssl, Oracle 7 Openssl, Agile Engineering Data Management, Communications Application Session Controller and 4 more 2025-04-20 5.0 MEDIUM 7.5 HIGH
In OpenSSL 1.1.0 before 1.1.0d, if a malicious server supplies bad parameters for a DHE or ECDHE key exchange then this can result in the client attempting to dereference a NULL pointer leading to a client crash. This could be exploited in a Denial of Service attack.
CVE-2017-3738 3 Debian, Nodejs, Openssl 3 Debian Linux, Node.js, Openssl 2025-04-20 4.3 MEDIUM 5.9 MEDIUM
There is an overflow bug in the AVX2 Montgomery multiplication procedure used in exponentiation with 1024-bit moduli. No EC algorithms are affected. Analysis suggests that attacks against RSA and DSA as a result of this defect would be very difficult to perform and are not believed likely. Attacks against DH1024 are considered just feasible, because most of the work necessary to deduce information about a private key may be performed offline. The amount of resources required for such an attack would be significant. However, for an attack on TLS to be meaningful, the server would have to share the DH1024 private key among multiple clients, which is no longer an option since CVE-2016-0701. This only affects processors that support the AVX2 but not ADX extensions like Intel Haswell (4th generation). Note: The impact from this issue is similar to CVE-2017-3736, CVE-2017-3732 and CVE-2015-3193. OpenSSL version 1.0.2-1.0.2m and 1.1.0-1.1.0g are affected. Fixed in OpenSSL 1.0.2n. Due to the low severity of this issue we are not issuing a new release of OpenSSL 1.1.0 at this time. The fix will be included in OpenSSL 1.1.0h when it becomes available. The fix is also available in commit e502cc86d in the OpenSSL git repository.
CVE-2017-3736 1 Openssl 1 Openssl 2025-04-20 4.0 MEDIUM 6.5 MEDIUM
There is a carry propagating bug in the x86_64 Montgomery squaring procedure in OpenSSL before 1.0.2m and 1.1.0 before 1.1.0g. No EC algorithms are affected. Analysis suggests that attacks against RSA and DSA as a result of this defect would be very difficult to perform and are not believed likely. Attacks against DH are considered just feasible (although very difficult) because most of the work necessary to deduce information about a private key may be performed offline. The amount of resources required for such an attack would be very significant and likely only accessible to a limited number of attackers. An attacker would additionally need online access to an unpatched system using the target private key in a scenario with persistent DH parameters and a private key that is shared between multiple clients. This only affects processors that support the BMI1, BMI2 and ADX extensions like Intel Broadwell (5th generation) and later or AMD Ryzen.
CVE-2015-4000 12 Apple, Canonical, Debian and 9 more 25 Iphone Os, Mac Os X, Safari and 22 more 2025-04-12 4.3 MEDIUM 3.7 LOW
The TLS protocol 1.2 and earlier, when a DHE_EXPORT ciphersuite is enabled on a server but not on a client, does not properly convey a DHE_EXPORT choice, which allows man-in-the-middle attackers to conduct cipher-downgrade attacks by rewriting a ClientHello with DHE replaced by DHE_EXPORT and then rewriting a ServerHello with DHE_EXPORT replaced by DHE, aka the "Logjam" issue.
CVE-2015-0204 1 Openssl 1 Openssl 2025-04-12 4.3 MEDIUM N/A
The ssl3_get_key_exchange function in s3_clnt.c in OpenSSL before 0.9.8zd, 1.0.0 before 1.0.0p, and 1.0.1 before 1.0.1k allows remote SSL servers to conduct RSA-to-EXPORT_RSA downgrade attacks and facilitate brute-force decryption by offering a weak ephemeral RSA key in a noncompliant role, related to the "FREAK" issue. NOTE: the scope of this CVE is only client code based on OpenSSL, not EXPORT_RSA issues associated with servers or other TLS implementations.
CVE-2016-6304 3 Nodejs, Novell, Openssl 3 Node.js, Suse Linux Enterprise Module For Web Scripting, Openssl 2025-04-12 7.8 HIGH 7.5 HIGH
Multiple memory leaks in t1_lib.c in OpenSSL before 1.0.1u, 1.0.2 before 1.0.2i, and 1.1.0 before 1.1.0a allow remote attackers to cause a denial of service (memory consumption) via large OCSP Status Request extensions.
CVE-2016-0703 1 Openssl 1 Openssl 2025-04-12 4.3 MEDIUM 5.9 MEDIUM
The get_client_master_key function in s2_srvr.c in the SSLv2 implementation in OpenSSL before 0.9.8zf, 1.0.0 before 1.0.0r, 1.0.1 before 1.0.1m, and 1.0.2 before 1.0.2a accepts a nonzero CLIENT-MASTER-KEY CLEAR-KEY-LENGTH value for an arbitrary cipher, which allows man-in-the-middle attackers to determine the MASTER-KEY value and decrypt TLS ciphertext data by leveraging a Bleichenbacher RSA padding oracle, a related issue to CVE-2016-0800.
CVE-2016-2182 3 Hp, Openssl, Oracle 6 Icewall Federation Agent, Icewall Mcrp, Icewall Sso and 3 more 2025-04-12 7.5 HIGH 9.8 CRITICAL
The BN_bn2dec function in crypto/bn/bn_print.c in OpenSSL before 1.1.0 does not properly validate division results, which allows remote attackers to cause a denial of service (out-of-bounds write and application crash) or possibly have unspecified other impact via unknown vectors.
CVE-2016-0800 2 Openssl, Pulsesecure 3 Openssl, Client, Steel Belted Radius 2025-04-12 4.3 MEDIUM 5.9 MEDIUM
The SSLv2 protocol, as used in OpenSSL before 1.0.1s and 1.0.2 before 1.0.2g and other products, requires a server to send a ServerVerify message before establishing that a client possesses certain plaintext RSA data, which makes it easier for remote attackers to decrypt TLS ciphertext data by leveraging a Bleichenbacher RSA padding oracle, aka a "DROWN" attack.
CVE-2015-0205 1 Openssl 1 Openssl 2025-04-12 5.0 MEDIUM N/A
The ssl3_get_cert_verify function in s3_srvr.c in OpenSSL 1.0.0 before 1.0.0p and 1.0.1 before 1.0.1k accepts client authentication with a Diffie-Hellman (DH) certificate without requiring a CertificateVerify message, which allows remote attackers to obtain access without knowledge of a private key via crafted TLS Handshake Protocol traffic to a server that recognizes a Certification Authority with DH support.
CVE-2014-3507 1 Openssl 1 Openssl 2025-04-12 5.0 MEDIUM N/A
Memory leak in d1_both.c in the DTLS implementation in OpenSSL 0.9.8 before 0.9.8zb, 1.0.0 before 1.0.0n, and 1.0.1 before 1.0.1i allows remote attackers to cause a denial of service (memory consumption) via zero-length DTLS fragments that trigger improper handling of the return value of a certain insert function.
CVE-2016-2177 3 Hp, Openssl, Oracle 6 Icewall Mcrp, Icewall Sso, Icewall Sso Agent Option and 3 more 2025-04-12 7.5 HIGH 9.8 CRITICAL
OpenSSL through 1.0.2h incorrectly uses pointer arithmetic for heap-buffer boundary checks, which might allow remote attackers to cause a denial of service (integer overflow and application crash) or possibly have unspecified other impact by leveraging unexpected malloc behavior, related to s3_srvr.c, ssl_sess.c, and t1_lib.c.
CVE-2016-0704 1 Openssl 1 Openssl 2025-04-12 4.3 MEDIUM 5.9 MEDIUM
An oracle protection mechanism in the get_client_master_key function in s2_srvr.c in the SSLv2 implementation in OpenSSL before 0.9.8zf, 1.0.0 before 1.0.0r, 1.0.1 before 1.0.1m, and 1.0.2 before 1.0.2a overwrites incorrect MASTER-KEY bytes during use of export cipher suites, which makes it easier for remote attackers to decrypt TLS ciphertext data by leveraging a Bleichenbacher RSA padding oracle, a related issue to CVE-2016-0800.