Total
572 CVE
CVE | Vendors | Products | Updated | CVSS v2 | CVSS v3 |
---|---|---|---|---|---|
CVE-2022-49298 | 1 Linux | 1 Linux Kernel | 2025-04-14 | N/A | 5.5 MEDIUM |
In the Linux kernel, the following vulnerability has been resolved: staging: rtl8712: fix uninit-value in r871xu_drv_init() When 'tmpU1b' returns from r8712_read8(padapter, EE_9346CR) is 0, 'mac[6]' will not be initialized. BUG: KMSAN: uninit-value in r871xu_drv_init+0x2d54/0x3070 drivers/staging/rtl8712/usb_intf.c:541 r871xu_drv_init+0x2d54/0x3070 drivers/staging/rtl8712/usb_intf.c:541 usb_probe_interface+0xf19/0x1600 drivers/usb/core/driver.c:396 really_probe+0x653/0x14b0 drivers/base/dd.c:596 __driver_probe_device+0x3e9/0x530 drivers/base/dd.c:752 driver_probe_device drivers/base/dd.c:782 [inline] __device_attach_driver+0x79f/0x1120 drivers/base/dd.c:899 bus_for_each_drv+0x2d6/0x3f0 drivers/base/bus.c:427 __device_attach+0x593/0x8e0 drivers/base/dd.c:970 device_initial_probe+0x4a/0x60 drivers/base/dd.c:1017 bus_probe_device+0x17b/0x3e0 drivers/base/bus.c:487 device_add+0x1fff/0x26e0 drivers/base/core.c:3405 usb_set_configuration+0x37e9/0x3ed0 drivers/usb/core/message.c:2170 usb_generic_driver_probe+0x13c/0x300 drivers/usb/core/generic.c:238 usb_probe_device+0x309/0x570 drivers/usb/core/driver.c:293 really_probe+0x653/0x14b0 drivers/base/dd.c:596 __driver_probe_device+0x3e9/0x530 drivers/base/dd.c:752 driver_probe_device drivers/base/dd.c:782 [inline] __device_attach_driver+0x79f/0x1120 drivers/base/dd.c:899 bus_for_each_drv+0x2d6/0x3f0 drivers/base/bus.c:427 __device_attach+0x593/0x8e0 drivers/base/dd.c:970 device_initial_probe+0x4a/0x60 drivers/base/dd.c:1017 bus_probe_device+0x17b/0x3e0 drivers/base/bus.c:487 device_add+0x1fff/0x26e0 drivers/base/core.c:3405 usb_new_device+0x1b8e/0x2950 drivers/usb/core/hub.c:2566 hub_port_connect drivers/usb/core/hub.c:5358 [inline] hub_port_connect_change drivers/usb/core/hub.c:5502 [inline] port_event drivers/usb/core/hub.c:5660 [inline] hub_event+0x58e3/0x89e0 drivers/usb/core/hub.c:5742 process_one_work+0xdb6/0x1820 kernel/workqueue.c:2307 worker_thread+0x10b3/0x21e0 kernel/workqueue.c:2454 kthread+0x3c7/0x500 kernel/kthread.c:377 ret_from_fork+0x1f/0x30 Local variable mac created at: r871xu_drv_init+0x1771/0x3070 drivers/staging/rtl8712/usb_intf.c:394 usb_probe_interface+0xf19/0x1600 drivers/usb/core/driver.c:396 KMSAN: uninit-value in r871xu_drv_init https://syzkaller.appspot.com/bug?id=3cd92b1d85428b128503bfa7a250294c9ae00bd8 | |||||
CVE-2025-21959 | 1 Linux | 1 Linux Kernel | 2025-04-14 | N/A | 5.5 MEDIUM |
In the Linux kernel, the following vulnerability has been resolved: netfilter: nf_conncount: Fully initialize struct nf_conncount_tuple in insert_tree() Since commit b36e4523d4d5 ("netfilter: nf_conncount: fix garbage collection confirm race"), `cpu` and `jiffies32` were introduced to the struct nf_conncount_tuple. The commit made nf_conncount_add() initialize `conn->cpu` and `conn->jiffies32` when allocating the struct. In contrast, count_tree() was not changed to initialize them. By commit 34848d5c896e ("netfilter: nf_conncount: Split insert and traversal"), count_tree() was split and the relevant allocation code now resides in insert_tree(). Initialize `conn->cpu` and `conn->jiffies32` in insert_tree(). BUG: KMSAN: uninit-value in find_or_evict net/netfilter/nf_conncount.c:117 [inline] BUG: KMSAN: uninit-value in __nf_conncount_add+0xd9c/0x2850 net/netfilter/nf_conncount.c:143 find_or_evict net/netfilter/nf_conncount.c:117 [inline] __nf_conncount_add+0xd9c/0x2850 net/netfilter/nf_conncount.c:143 count_tree net/netfilter/nf_conncount.c:438 [inline] nf_conncount_count+0x82f/0x1e80 net/netfilter/nf_conncount.c:521 connlimit_mt+0x7f6/0xbd0 net/netfilter/xt_connlimit.c:72 __nft_match_eval net/netfilter/nft_compat.c:403 [inline] nft_match_eval+0x1a5/0x300 net/netfilter/nft_compat.c:433 expr_call_ops_eval net/netfilter/nf_tables_core.c:240 [inline] nft_do_chain+0x426/0x2290 net/netfilter/nf_tables_core.c:288 nft_do_chain_ipv4+0x1a5/0x230 net/netfilter/nft_chain_filter.c:23 nf_hook_entry_hookfn include/linux/netfilter.h:154 [inline] nf_hook_slow+0xf4/0x400 net/netfilter/core.c:626 nf_hook_slow_list+0x24d/0x860 net/netfilter/core.c:663 NF_HOOK_LIST include/linux/netfilter.h:350 [inline] ip_sublist_rcv+0x17b7/0x17f0 net/ipv4/ip_input.c:633 ip_list_rcv+0x9ef/0xa40 net/ipv4/ip_input.c:669 __netif_receive_skb_list_ptype net/core/dev.c:5936 [inline] __netif_receive_skb_list_core+0x15c5/0x1670 net/core/dev.c:5983 __netif_receive_skb_list net/core/dev.c:6035 [inline] netif_receive_skb_list_internal+0x1085/0x1700 net/core/dev.c:6126 netif_receive_skb_list+0x5a/0x460 net/core/dev.c:6178 xdp_recv_frames net/bpf/test_run.c:280 [inline] xdp_test_run_batch net/bpf/test_run.c:361 [inline] bpf_test_run_xdp_live+0x2e86/0x3480 net/bpf/test_run.c:390 bpf_prog_test_run_xdp+0xf1d/0x1ae0 net/bpf/test_run.c:1316 bpf_prog_test_run+0x5e5/0xa30 kernel/bpf/syscall.c:4407 __sys_bpf+0x6aa/0xd90 kernel/bpf/syscall.c:5813 __do_sys_bpf kernel/bpf/syscall.c:5902 [inline] __se_sys_bpf kernel/bpf/syscall.c:5900 [inline] __ia32_sys_bpf+0xa0/0xe0 kernel/bpf/syscall.c:5900 ia32_sys_call+0x394d/0x4180 arch/x86/include/generated/asm/syscalls_32.h:358 do_syscall_32_irqs_on arch/x86/entry/common.c:165 [inline] __do_fast_syscall_32+0xb0/0x110 arch/x86/entry/common.c:387 do_fast_syscall_32+0x38/0x80 arch/x86/entry/common.c:412 do_SYSENTER_32+0x1f/0x30 arch/x86/entry/common.c:450 entry_SYSENTER_compat_after_hwframe+0x84/0x8e Uninit was created at: slab_post_alloc_hook mm/slub.c:4121 [inline] slab_alloc_node mm/slub.c:4164 [inline] kmem_cache_alloc_noprof+0x915/0xe10 mm/slub.c:4171 insert_tree net/netfilter/nf_conncount.c:372 [inline] count_tree net/netfilter/nf_conncount.c:450 [inline] nf_conncount_count+0x1415/0x1e80 net/netfilter/nf_conncount.c:521 connlimit_mt+0x7f6/0xbd0 net/netfilter/xt_connlimit.c:72 __nft_match_eval net/netfilter/nft_compat.c:403 [inline] nft_match_eval+0x1a5/0x300 net/netfilter/nft_compat.c:433 expr_call_ops_eval net/netfilter/nf_tables_core.c:240 [inline] nft_do_chain+0x426/0x2290 net/netfilter/nf_tables_core.c:288 nft_do_chain_ipv4+0x1a5/0x230 net/netfilter/nft_chain_filter.c:23 nf_hook_entry_hookfn include/linux/netfilter.h:154 [inline] nf_hook_slow+0xf4/0x400 net/netfilter/core.c:626 nf_hook_slow_list+0x24d/0x860 net/netfilter/core.c:663 NF_HOOK_LIST include/linux/netfilter.h:350 [inline] ip_sublist_rcv+0x17b7/0x17f0 net/ipv4/ip_input.c:633 ip_list_rcv+0x9ef/0xa40 net/ip ---truncated--- | |||||
CVE-2025-21996 | 1 Linux | 1 Linux Kernel | 2025-04-14 | N/A | 5.5 MEDIUM |
In the Linux kernel, the following vulnerability has been resolved: drm/radeon: fix uninitialized size issue in radeon_vce_cs_parse() On the off chance that command stream passed from userspace via ioctl() call to radeon_vce_cs_parse() is weirdly crafted and first command to execute is to encode (case 0x03000001), the function in question will attempt to call radeon_vce_cs_reloc() with size argument that has not been properly initialized. Specifically, 'size' will point to 'tmp' variable before the latter had a chance to be assigned any value. Play it safe and init 'tmp' with 0, thus ensuring that radeon_vce_cs_reloc() will catch an early error in cases like these. Found by Linux Verification Center (linuxtesting.org) with static analysis tool SVACE. (cherry picked from commit 2d52de55f9ee7aaee0e09ac443f77855989c6b68) | |||||
CVE-2016-0821 | 2 Google, Linux | 2 Android, Linux Kernel | 2025-04-12 | 2.1 LOW | 5.5 MEDIUM |
The LIST_POISON feature in include/linux/poison.h in the Linux kernel before 4.3, as used in Android 6.0.1 before 2016-03-01, does not properly consider the relationship to the mmap_min_addr value, which makes it easier for attackers to bypass a poison-pointer protection mechanism by triggering the use of an uninitialized list entry, aka Android internal bug 26186802, a different vulnerability than CVE-2015-3636. | |||||
CVE-2015-8390 | 3 Fedoraproject, Pcre, Php | 3 Fedora, Perl Compatible Regular Expression Library, Php | 2025-04-12 | 7.5 HIGH | 9.8 CRITICAL |
PCRE before 8.38 mishandles the [: and \\ substrings in character classes, which allows remote attackers to cause a denial of service (uninitialized memory read) or possibly have unspecified other impact via a crafted regular expression, as demonstrated by a JavaScript RegExp object encountered by Konqueror. | |||||
CVE-2015-5165 | 7 Arista, Debian, Fedoraproject and 4 more | 24 Eos, Debian Linux, Fedora and 21 more | 2025-04-12 | 9.3 HIGH | N/A |
The C+ mode offload emulation in the RTL8139 network card device model in QEMU, as used in Xen 4.5.x and earlier, allows remote attackers to read process heap memory via unspecified vectors. | |||||
CVE-2016-5105 | 3 Canonical, Debian, Qemu | 3 Ubuntu Linux, Debian Linux, Qemu | 2025-04-12 | 1.9 LOW | 4.4 MEDIUM |
The megasas_dcmd_cfg_read function in hw/scsi/megasas.c in QEMU, when built with MegaRAID SAS 8708EM2 Host Bus Adapter emulation support, uses an uninitialized variable, which allows local guest administrators to read host memory via vectors involving a MegaRAID Firmware Interface (MFI) command. | |||||
CVE-2015-3414 | 5 Apple, Canonical, Debian and 2 more | 6 Mac Os X, Watchos, Ubuntu Linux and 3 more | 2025-04-12 | 7.5 HIGH | N/A |
SQLite before 3.8.9 does not properly implement the dequoting of collation-sequence names, which allows context-dependent attackers to cause a denial of service (uninitialized memory access and application crash) or possibly have unspecified other impact via a crafted COLLATE clause, as demonstrated by COLLATE"""""""" at the end of a SELECT statement. | |||||
CVE-2024-23137 | 1 Autodesk | 9 Advance Steel, Autocad, Autocad Architecture and 6 more | 2025-04-11 | N/A | 7.8 HIGH |
A maliciously crafted STP or SLDPRT file, when parsed in ODXSW_DLL.dll through Autodesk applications, can be used to uninitialized variables. This vulnerability, along with other vulnerabilities, can lead to code execution in the current process. | |||||
CVE-2025-21922 | 1 Linux | 1 Linux Kernel | 2025-04-11 | N/A | 5.5 MEDIUM |
In the Linux kernel, the following vulnerability has been resolved: ppp: Fix KMSAN uninit-value warning with bpf Syzbot caught an "KMSAN: uninit-value" warning [1], which is caused by the ppp driver not initializing a 2-byte header when using socket filter. The following code can generate a PPP filter BPF program: ''' struct bpf_program fp; pcap_t *handle; handle = pcap_open_dead(DLT_PPP_PPPD, 65535); pcap_compile(handle, &fp, "ip and outbound", 0, 0); bpf_dump(&fp, 1); ''' Its output is: ''' (000) ldh [2] (001) jeq #0x21 jt 2 jf 5 (002) ldb [0] (003) jeq #0x1 jt 4 jf 5 (004) ret #65535 (005) ret #0 ''' Wen can find similar code at the following link: https://github.com/ppp-project/ppp/blob/master/pppd/options.c#L1680 The maintainer of this code repository is also the original maintainer of the ppp driver. As you can see the BPF program skips 2 bytes of data and then reads the 'Protocol' field to determine if it's an IP packet. Then it read the first byte of the first 2 bytes to determine the direction. The issue is that only the first byte indicating direction is initialized in current ppp driver code while the second byte is not initialized. For normal BPF programs generated by libpcap, uninitialized data won't be used, so it's not a problem. However, for carefully crafted BPF programs, such as those generated by syzkaller [2], which start reading from offset 0, the uninitialized data will be used and caught by KMSAN. [1] https://syzkaller.appspot.com/bug?extid=853242d9c9917165d791 [2] https://syzkaller.appspot.com/text?tag=ReproC&x=11994913980000 | |||||
CVE-2011-1266 | 1 Microsoft | 6 Internet Explorer, Windows 7, Windows Server 2003 and 3 more | 2025-04-11 | 9.3 HIGH | N/A |
The Vector Markup Language (VML) implementation in vgx.dll in Microsoft Internet Explorer 6 through 8 does not properly handle objects in memory, which allows remote attackers to execute arbitrary code by accessing an object that (1) was not properly initialized or (2) is deleted, aka "VML Memory Corruption Vulnerability." | |||||
CVE-2011-1256 | 1 Microsoft | 6 Internet Explorer, Windows 7, Windows Server 2003 and 3 more | 2025-04-11 | 9.3 HIGH | N/A |
Microsoft Internet Explorer 6 through 8 does not properly handle objects in memory, which allows remote attackers to execute arbitrary code by accessing an object that (1) was not properly initialized or (2) is deleted, aka "DOM Modification Memory Corruption Vulnerability." | |||||
CVE-2011-1255 | 1 Microsoft | 6 Internet Explorer, Windows 7, Windows Server 2003 and 3 more | 2025-04-11 | 9.3 HIGH | N/A |
The Timed Interactive Multimedia Extensions (aka HTML+TIME) implementation in Microsoft Internet Explorer 6 through 8 does not properly handle objects in memory, which allows remote attackers to execute arbitrary code by accessing an object that (1) was not properly initialized or (2) is deleted, aka "Time Element Memory Corruption Vulnerability." | |||||
CVE-2011-1251 | 1 Microsoft | 6 Internet Explorer, Windows 7, Windows Server 2003 and 3 more | 2025-04-11 | 9.3 HIGH | N/A |
Microsoft Internet Explorer 8 does not properly handle objects in memory, which allows remote attackers to execute arbitrary code by accessing an object that (1) was not properly initialized or (2) is deleted, aka "DOM Manipulation Memory Corruption Vulnerability." | |||||
CVE-2011-1964 | 1 Microsoft | 6 Internet Explorer, Windows 7, Windows Server 2003 and 3 more | 2025-04-11 | 9.3 HIGH | N/A |
Microsoft Internet Explorer 6 through 9 does not properly handle objects in memory, which allows remote attackers to execute arbitrary code by accessing an object that (1) was not properly initialized or (2) is deleted, aka "Style Object Memory Corruption Vulnerability." | |||||
CVE-2010-3346 | 1 Microsoft | 6 Internet Explorer, Windows 7, Windows Server 2003 and 3 more | 2025-04-11 | 9.3 HIGH | N/A |
Microsoft Internet Explorer 6, 7, and 8 does not properly handle objects in memory, which allows remote attackers to execute arbitrary code by accessing an object that (1) was not properly initialized or (2) is deleted, leading to memory corruption, aka "HTML Element Memory Corruption Vulnerability." | |||||
CVE-2011-1250 | 1 Microsoft | 6 Internet Explorer, Windows 7, Windows Server 2003 and 3 more | 2025-04-11 | 9.3 HIGH | N/A |
Microsoft Internet Explorer 6 through 9 does not properly handle objects in memory, which allows remote attackers to execute arbitrary code by accessing an object that (1) was not properly initialized or (2) is deleted, aka "Link Properties Handling Memory Corruption Vulnerability." | |||||
CVE-2011-1995 | 1 Microsoft | 6 Internet Explorer, Windows 7, Windows Server 2003 and 3 more | 2025-04-11 | 9.3 HIGH | N/A |
Microsoft Internet Explorer 6 through 9 does not properly handle objects in memory, which allows remote attackers to execute arbitrary code by accessing an object that was not properly initialized, aka "OLEAuto32.dll Remote Code Execution Vulnerability." | |||||
CVE-2010-2557 | 1 Microsoft | 3 Internet Explorer, Windows Server 2003, Windows Xp | 2025-04-11 | 9.3 HIGH | N/A |
Microsoft Internet Explorer 6 does not properly handle objects in memory, which allows remote attackers to execute arbitrary code by accessing an object that (1) was not properly initialized or (2) is deleted, leading to memory corruption, aka "Uninitialized Memory Corruption Vulnerability." | |||||
CVE-2011-1998 | 1 Microsoft | 4 Internet Explorer, Windows 7, Windows Server 2008 and 1 more | 2025-04-11 | 9.3 HIGH | N/A |
Microsoft Internet Explorer 9 does not properly handle objects in memory, which allows remote attackers to execute arbitrary code by accessing an object that was not properly initialized, aka "Jscript9.dll Remote Code Execution Vulnerability." |