Vulnerabilities (CVE)

Filtered by CWE-667
Total 592 CVE
CVE Vendors Products Updated CVSS v2 CVSS v3
CVE-2025-37969 2 Debian, Linux 2 Debian Linux, Linux Kernel 2025-12-16 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: iio: imu: st_lsm6dsx: fix possible lockup in st_lsm6dsx_read_tagged_fifo Prevent st_lsm6dsx_read_tagged_fifo from falling in an infinite loop in case pattern_len is equal to zero and the device FIFO is not empty.
CVE-2025-37968 2 Debian, Linux 2 Debian Linux, Linux Kernel 2025-12-16 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: iio: light: opt3001: fix deadlock due to concurrent flag access The threaded IRQ function in this driver is reading the flag twice: once to lock a mutex and once to unlock it. Even though the code setting the flag is designed to prevent it, there are subtle cases where the flag could be true at the mutex_lock stage and false at the mutex_unlock stage. This results in the mutex not being unlocked, resulting in a deadlock. Fix it by making the opt3001_irq() code generally more robust, reading the flag into a variable and using the variable value at both stages.
CVE-2025-37967 2 Debian, Linux 2 Debian Linux, Linux Kernel 2025-12-16 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: usb: typec: ucsi: displayport: Fix deadlock This patch introduces the ucsi_con_mutex_lock / ucsi_con_mutex_unlock functions to the UCSI driver. ucsi_con_mutex_lock ensures the connector mutex is only locked if a connection is established and the partner pointer is valid. This resolves a deadlock scenario where ucsi_displayport_remove_partner holds con->mutex waiting for dp_altmode_work to complete while dp_altmode_work attempts to acquire it.
CVE-2025-37997 2 Debian, Linux 2 Debian Linux, Linux Kernel 2025-12-16 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: netfilter: ipset: fix region locking in hash types Region locking introduced in v5.6-rc4 contained three macros to handle the region locks: ahash_bucket_start(), ahash_bucket_end() which gave back the start and end hash bucket values belonging to a given region lock and ahash_region() which should give back the region lock belonging to a given hash bucket. The latter was incorrect which can lead to a race condition between the garbage collector and adding new elements when a hash type of set is defined with timeouts.
CVE-2025-38335 2 Debian, Linux 2 Debian Linux, Linux Kernel 2025-12-16 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: Input: gpio-keys - fix a sleep while atomic with PREEMPT_RT When enabling PREEMPT_RT, the gpio_keys_irq_timer() callback runs in hard irq context, but the input_event() takes a spin_lock, which isn't allowed there as it is converted to a rt_spin_lock(). [ 4054.289999] BUG: sleeping function called from invalid context at kernel/locking/spinlock_rt.c:48 [ 4054.290028] in_atomic(): 1, irqs_disabled(): 1, non_block: 0, pid: 0, name: swapper/0 ... [ 4054.290195] __might_resched+0x13c/0x1f4 [ 4054.290209] rt_spin_lock+0x54/0x11c [ 4054.290219] input_event+0x48/0x80 [ 4054.290230] gpio_keys_irq_timer+0x4c/0x78 [ 4054.290243] __hrtimer_run_queues+0x1a4/0x438 [ 4054.290257] hrtimer_interrupt+0xe4/0x240 [ 4054.290269] arch_timer_handler_phys+0x2c/0x44 [ 4054.290283] handle_percpu_devid_irq+0x8c/0x14c [ 4054.290297] handle_irq_desc+0x40/0x58 [ 4054.290307] generic_handle_domain_irq+0x1c/0x28 [ 4054.290316] gic_handle_irq+0x44/0xcc Considering the gpio_keys_irq_isr() can run in any context, e.g. it can be threaded, it seems there's no point in requesting the timer isr to run in hard irq context. Relax the hrtimer not to use the hard context.
CVE-2025-38094 2 Debian, Linux 2 Debian Linux, Linux Kernel 2025-12-16 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: net: cadence: macb: Fix a possible deadlock in macb_halt_tx. There is a situation where after THALT is set high, TGO stays high as well. Because jiffies are never updated, as we are in a context with interrupts disabled, we never exit that loop and have a deadlock. That deadlock was noticed on a sama5d4 device that stayed locked for days. Use retries instead of jiffies so that the timeout really works and we do not have a deadlock anymore.
CVE-2025-21710 1 Linux 1 Linux Kernel 2025-12-16 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: tcp: correct handling of extreme memory squeeze Testing with iperf3 using the "pasta" protocol splicer has revealed a problem in the way tcp handles window advertising in extreme memory squeeze situations. Under memory pressure, a socket endpoint may temporarily advertise a zero-sized window, but this is not stored as part of the socket data. The reasoning behind this is that it is considered a temporary setting which shouldn't influence any further calculations. However, if we happen to stall at an unfortunate value of the current window size, the algorithm selecting a new value will consistently fail to advertise a non-zero window once we have freed up enough memory. This means that this side's notion of the current window size is different from the one last advertised to the peer, causing the latter to not send any data to resolve the sitution. The problem occurs on the iperf3 server side, and the socket in question is a completely regular socket with the default settings for the fedora40 kernel. We do not use SO_PEEK or SO_RCVBUF on the socket. The following excerpt of a logging session, with own comments added, shows more in detail what is happening: // tcp_v4_rcv(->) // tcp_rcv_established(->) [5201<->39222]: ==== Activating log @ net/ipv4/tcp_input.c/tcp_data_queue()/5257 ==== [5201<->39222]: tcp_data_queue(->) [5201<->39222]: DROPPING skb [265600160..265665640], reason: SKB_DROP_REASON_PROTO_MEM [rcv_nxt 265600160, rcv_wnd 262144, snt_ack 265469200, win_now 131184] [copied_seq 259909392->260034360 (124968), unread 5565800, qlen 85, ofoq 0] [OFO queue: gap: 65480, len: 0] [5201<->39222]: tcp_data_queue(<-) [5201<->39222]: __tcp_transmit_skb(->) [tp->rcv_wup: 265469200, tp->rcv_wnd: 262144, tp->rcv_nxt 265600160] [5201<->39222]: tcp_select_window(->) [5201<->39222]: (inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOMEM) ? --> TRUE [tp->rcv_wup: 265469200, tp->rcv_wnd: 262144, tp->rcv_nxt 265600160] returning 0 [5201<->39222]: tcp_select_window(<-) [5201<->39222]: ADVERTISING WIN 0, ACK_SEQ: 265600160 [5201<->39222]: [__tcp_transmit_skb(<-) [5201<->39222]: tcp_rcv_established(<-) [5201<->39222]: tcp_v4_rcv(<-) // Receive queue is at 85 buffers and we are out of memory. // We drop the incoming buffer, although it is in sequence, and decide // to send an advertisement with a window of zero. // We don't update tp->rcv_wnd and tp->rcv_wup accordingly, which means // we unconditionally shrink the window. [5201<->39222]: tcp_recvmsg_locked(->) [5201<->39222]: __tcp_cleanup_rbuf(->) tp->rcv_wup: 265469200, tp->rcv_wnd: 262144, tp->rcv_nxt 265600160 [5201<->39222]: [new_win = 0, win_now = 131184, 2 * win_now = 262368] [5201<->39222]: [new_win >= (2 * win_now) ? --> time_to_ack = 0] [5201<->39222]: NOT calling tcp_send_ack() [tp->rcv_wup: 265469200, tp->rcv_wnd: 262144, tp->rcv_nxt 265600160] [5201<->39222]: __tcp_cleanup_rbuf(<-) [rcv_nxt 265600160, rcv_wnd 262144, snt_ack 265469200, win_now 131184] [copied_seq 260040464->260040464 (0), unread 5559696, qlen 85, ofoq 0] returning 6104 bytes [5201<->39222]: tcp_recvmsg_locked(<-) // After each read, the algorithm for calculating the new receive // window in __tcp_cleanup_rbuf() finds it is too small to advertise // or to update tp->rcv_wnd. // Meanwhile, the peer thinks the window is zero, and will not send // any more data to trigger an update from the interrupt mode side. [5201<->39222]: tcp_recvmsg_locked(->) [5201<->39222]: __tcp_cleanup_rbuf(->) tp->rcv_wup: 265469200, tp->rcv_wnd: 262144, tp->rcv_nxt 265600160 [5201<->39222]: [new_win = 262144, win_now = 131184, 2 * win_n ---truncated---
CVE-2025-39884 1 Linux 1 Linux Kernel 2025-12-12 N/A 4.7 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: btrfs: fix subvolume deletion lockup caused by inodes xarray race There is a race condition between inode eviction and inode caching that can cause a live struct btrfs_inode to be missing from the root->inodes xarray. Specifically, there is a window during evict() between the inode being unhashed and deleted from the xarray. If btrfs_iget() is called for the same inode in that window, it will be recreated and inserted into the xarray, but then eviction will delete the new entry, leaving nothing in the xarray: Thread 1 Thread 2 --------------------------------------------------------------- evict() remove_inode_hash() btrfs_iget_path() btrfs_iget_locked() btrfs_read_locked_inode() btrfs_add_inode_to_root() destroy_inode() btrfs_destroy_inode() btrfs_del_inode_from_root() __xa_erase In turn, this can cause issues for subvolume deletion. Specifically, if an inode is in this lost state, and all other inodes are evicted, then btrfs_del_inode_from_root() will call btrfs_add_dead_root() prematurely. If the lost inode has a delayed_node attached to it, then when btrfs_clean_one_deleted_snapshot() calls btrfs_kill_all_delayed_nodes(), it will loop forever because the delayed_nodes xarray will never become empty (unless memory pressure forces the inode out). We saw this manifest as soft lockups in production. Fix it by only deleting the xarray entry if it matches the given inode (using __xa_cmpxchg()).
CVE-2025-39910 1 Linux 1 Linux Kernel 2025-12-12 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: mm/vmalloc, mm/kasan: respect gfp mask in kasan_populate_vmalloc() kasan_populate_vmalloc() and its helpers ignore the caller's gfp_mask and always allocate memory using the hardcoded GFP_KERNEL flag. This makes them inconsistent with vmalloc(), which was recently extended to support GFP_NOFS and GFP_NOIO allocations. Page table allocations performed during shadow population also ignore the external gfp_mask. To preserve the intended semantics of GFP_NOFS and GFP_NOIO, wrap the apply_to_page_range() calls into the appropriate memalloc scope. xfs calls vmalloc with GFP_NOFS, so this bug could lead to deadlock. There was a report here https://lkml.kernel.org/r/686ea951.050a0220.385921.0016.GAE@google.com This patch: - Extends kasan_populate_vmalloc() and helpers to take gfp_mask; - Passes gfp_mask down to alloc_pages_bulk() and __get_free_page(); - Enforces GFP_NOFS/NOIO semantics with memalloc_*_save()/restore() around apply_to_page_range(); - Updates vmalloc.c and percpu allocator call sites accordingly.
CVE-2025-39915 1 Linux 1 Linux Kernel 2025-12-12 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: net: phy: transfer phy_config_inband() locking responsibility to phylink Problem description =================== Lockdep reports a possible circular locking dependency (AB/BA) between &pl->state_mutex and &phy->lock, as follows. phylink_resolve() // acquires &pl->state_mutex -> phylink_major_config() -> phy_config_inband() // acquires &pl->phydev->lock whereas all the other call sites where &pl->state_mutex and &pl->phydev->lock have the locking scheme reversed. Everywhere else, &pl->phydev->lock is acquired at the top level, and &pl->state_mutex at the lower level. A clear example is phylink_bringup_phy(). The outlier is the newly introduced phy_config_inband() and the existing lock order is the correct one. To understand why it cannot be the other way around, it is sufficient to consider phylink_phy_change(), phylink's callback from the PHY device's phy->phy_link_change() virtual method, invoked by the PHY state machine. phy_link_up() and phy_link_down(), the (indirect) callers of phylink_phy_change(), are called with &phydev->lock acquired. Then phylink_phy_change() acquires its own &pl->state_mutex, to serialize changes made to its pl->phy_state and pl->link_config. So all other instances of &pl->state_mutex and &phydev->lock must be consistent with this order. Problem impact ============== I think the kernel runs a serious deadlock risk if an existing phylink_resolve() thread, which results in a phy_config_inband() call, is concurrent with a phy_link_up() or phy_link_down() call, which will deadlock on &pl->state_mutex in phylink_phy_change(). Practically speaking, the impact may be limited by the slow speed of the medium auto-negotiation protocol, which makes it unlikely for the current state to still be unresolved when a new one is detected, but I think the problem is there. Nonetheless, the problem was discovered using lockdep. Proposed solution ================= Practically speaking, the phy_config_inband() requirement of having phydev->lock acquired must transfer to the caller (phylink is the only caller). There, it must bubble up until immediately before &pl->state_mutex is acquired, for the cases where that takes place. Solution details, considerations, notes ======================================= This is the phy_config_inband() call graph: sfp_upstream_ops :: connect_phy() | v phylink_sfp_connect_phy() | v phylink_sfp_config_phy() | | sfp_upstream_ops :: module_insert() | | | v | phylink_sfp_module_insert() | | | | sfp_upstream_ops :: module_start() | | | | | v | | phylink_sfp_module_start() | | | | v v | phylink_sfp_config_optical() phylink_start() | | | phylink_resume() v v | | phylink_sfp_set_config() | | | v v v phylink_mac_initial_config() | phylink_resolve() | | phylink_ethtool_ksettings_set() v v v phylink_major_config() | v phy_config_inband() phylink_major_config() caller #1, phylink_mac_initial_config(), does not acquire &pl->state_mutex nor do its callers. It must acquire &pl->phydev->lock prior to calling phylink_major_config(). phylink_major_config() caller #2, phylink_resolve() acquires &pl->state_mutex, thus also needs to acquire &pl->phydev->lock. phylink_major_config() caller #3, phylink_ethtool_ksettings_set(), is completely uninteresting, because it only call ---truncated---
CVE-2022-50371 1 Linux 1 Linux Kernel 2025-12-12 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: led: qcom-lpg: Fix sleeping in atomic lpg_brighness_set() function can sleep, while led's brightness_set() callback must be non-blocking. Change LPG driver to use brightness_set_blocking() instead. BUG: sleeping function called from invalid context at kernel/locking/mutex.c:580 in_atomic(): 1, irqs_disabled(): 0, non_block: 0, pid: 0, name: swapper/0 preempt_count: 101, expected: 0 INFO: lockdep is turned off. CPU: 0 PID: 0 Comm: swapper/0 Tainted: G W 6.1.0-rc1-00014-gbe99b089c6fc-dirty #85 Hardware name: Qualcomm Technologies, Inc. DB820c (DT) Call trace: dump_backtrace.part.0+0xe4/0xf0 show_stack+0x18/0x40 dump_stack_lvl+0x88/0xb4 dump_stack+0x18/0x34 __might_resched+0x170/0x254 __might_sleep+0x48/0x9c __mutex_lock+0x4c/0x400 mutex_lock_nested+0x2c/0x40 lpg_brightness_single_set+0x40/0x90 led_set_brightness_nosleep+0x34/0x60 led_heartbeat_function+0x80/0x170 call_timer_fn+0xb8/0x340 __run_timers.part.0+0x20c/0x254 run_timer_softirq+0x3c/0x7c _stext+0x14c/0x578 ____do_softirq+0x10/0x20 call_on_irq_stack+0x2c/0x5c do_softirq_own_stack+0x1c/0x30 __irq_exit_rcu+0x164/0x170 irq_exit_rcu+0x10/0x40 el1_interrupt+0x38/0x50 el1h_64_irq_handler+0x18/0x2c el1h_64_irq+0x64/0x68 cpuidle_enter_state+0xc8/0x380 cpuidle_enter+0x38/0x50 do_idle+0x244/0x2d0 cpu_startup_entry+0x24/0x30 rest_init+0x128/0x1a0 arch_post_acpi_subsys_init+0x0/0x18 start_kernel+0x6f4/0x734 __primary_switched+0xbc/0xc4
CVE-2022-50382 1 Linux 1 Linux Kernel 2025-12-11 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: padata: Always leave BHs disabled when running ->parallel() A deadlock can happen when an overloaded system runs ->parallel() in the context of the current task: padata_do_parallel ->parallel() pcrypt_aead_enc/dec padata_do_serial spin_lock(&reorder->lock) // BHs still enabled <interrupt> ... __do_softirq ... padata_do_serial spin_lock(&reorder->lock) It's a bug for BHs to be on in _do_serial as Steffen points out, so ensure they're off in the "current task" case like they are in padata_parallel_worker to avoid this situation.
CVE-2025-14345 1 Mongodb 1 Mongodb 2025-12-11 N/A 4.2 MEDIUM
A post-authentication flaw in the network two-phase commit protocol used for cross-shard transactions in MongoDB Server may lead to logical data inconsistencies under specific conditions which are not predictable and exist for a very short period of time. This error can cause the transaction coordination logic to misinterpret the transaction as committed, resulting in inconsistent state on those shards. This may lead to low integrity and availability impact. This issue impacts MongoDB Server v8.0 versions prior to 8.0.16, MongoDB Server v7.0 versions prior to 7.0.26 and MongoDB server v8.2 versions prior to 8.2.2.
CVE-2025-49178 2025-12-11 N/A 5.5 MEDIUM
A flaw was found in the X server's request handling. Non-zero 'bytes to ignore' in a client's request can cause the server to skip processing another client's request, potentially leading to a denial of service.
CVE-2023-53348 1 Linux 1 Linux Kernel 2025-12-11 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: btrfs: fix deadlock when aborting transaction during relocation with scrub Before relocating a block group we pause scrub, then do the relocation and then unpause scrub. The relocation process requires starting and committing a transaction, and if we have a failure in the critical section of the transaction commit path (transaction state >= TRANS_STATE_COMMIT_START), we will deadlock if there is a paused scrub. That results in stack traces like the following: [42.479] BTRFS info (device sdc): relocating block group 53876686848 flags metadata|raid6 [42.936] BTRFS warning (device sdc): Skipping commit of aborted transaction. [42.936] ------------[ cut here ]------------ [42.936] BTRFS: Transaction aborted (error -28) [42.936] WARNING: CPU: 11 PID: 346822 at fs/btrfs/transaction.c:1977 btrfs_commit_transaction+0xcc8/0xeb0 [btrfs] [42.936] Modules linked in: dm_flakey dm_mod loop btrfs (...) [42.936] CPU: 11 PID: 346822 Comm: btrfs Tainted: G W 6.3.0-rc2-btrfs-next-127+ #1 [42.936] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014 [42.936] RIP: 0010:btrfs_commit_transaction+0xcc8/0xeb0 [btrfs] [42.936] Code: ff ff 45 8b (...) [42.936] RSP: 0018:ffffb58649633b48 EFLAGS: 00010282 [42.936] RAX: 0000000000000000 RBX: ffff8be6ef4d5bd8 RCX: 0000000000000000 [42.936] RDX: 0000000000000002 RSI: ffffffffb35e7782 RDI: 00000000ffffffff [42.936] RBP: ffff8be6ef4d5c98 R08: 0000000000000000 R09: ffffb586496339e8 [42.936] R10: 0000000000000001 R11: 0000000000000001 R12: ffff8be6d38c7c00 [42.936] R13: 00000000ffffffe4 R14: ffff8be6c268c000 R15: ffff8be6ef4d5cf0 [42.936] FS: 00007f381a82b340(0000) GS:ffff8beddfcc0000(0000) knlGS:0000000000000000 [42.936] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [42.936] CR2: 00007f1e35fb7638 CR3: 0000000117680006 CR4: 0000000000370ee0 [42.936] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [42.936] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [42.936] Call Trace: [42.936] <TASK> [42.936] ? start_transaction+0xcb/0x610 [btrfs] [42.936] prepare_to_relocate+0x111/0x1a0 [btrfs] [42.936] relocate_block_group+0x57/0x5d0 [btrfs] [42.936] ? btrfs_wait_nocow_writers+0x25/0xb0 [btrfs] [42.936] btrfs_relocate_block_group+0x248/0x3c0 [btrfs] [42.936] ? __pfx_autoremove_wake_function+0x10/0x10 [42.936] btrfs_relocate_chunk+0x3b/0x150 [btrfs] [42.936] btrfs_balance+0x8ff/0x11d0 [btrfs] [42.936] ? __kmem_cache_alloc_node+0x14a/0x410 [42.936] btrfs_ioctl+0x2334/0x32c0 [btrfs] [42.937] ? mod_objcg_state+0xd2/0x360 [42.937] ? refill_obj_stock+0xb0/0x160 [42.937] ? seq_release+0x25/0x30 [42.937] ? __rseq_handle_notify_resume+0x3b5/0x4b0 [42.937] ? percpu_counter_add_batch+0x2e/0xa0 [42.937] ? __x64_sys_ioctl+0x88/0xc0 [42.937] __x64_sys_ioctl+0x88/0xc0 [42.937] do_syscall_64+0x38/0x90 [42.937] entry_SYSCALL_64_after_hwframe+0x72/0xdc [42.937] RIP: 0033:0x7f381a6ffe9b [42.937] Code: 00 48 89 44 24 (...) [42.937] RSP: 002b:00007ffd45ecf060 EFLAGS: 00000246 ORIG_RAX: 0000000000000010 [42.937] RAX: ffffffffffffffda RBX: 0000000000000001 RCX: 00007f381a6ffe9b [42.937] RDX: 00007ffd45ecf150 RSI: 00000000c4009420 RDI: 0000000000000003 [42.937] RBP: 0000000000000003 R08: 0000000000000013 R09: 0000000000000000 [42.937] R10: 00007f381a60c878 R11: 0000000000000246 R12: 00007ffd45ed0423 [42.937] R13: 00007ffd45ecf150 R14: 0000000000000000 R15: 00007ffd45ecf148 [42.937] </TASK> [42.937] ---[ end trace 0000000000000000 ]--- [42.937] BTRFS: error (device sdc: state A) in cleanup_transaction:1977: errno=-28 No space left [59.196] INFO: task btrfs:346772 blocked for more than 120 seconds. [59.196] Tainted: G W 6.3.0-rc2-btrfs-next-127+ #1 [59.196] "echo 0 > /proc/sys/kernel/hung_ ---truncated---
CVE-2025-48618 1 Google 1 Android 2025-12-08 N/A 6.8 MEDIUM
In processLaunchBrowser of CommandParamsFactory.java, there is a possible browser interaction from the lockscreen due to improper locking. This could lead to physical escalation of privilege with no additional execution privileges needed. User interaction is not needed for exploitation.
CVE-2023-53233 1 Linux 1 Linux Kernel 2025-12-04 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: net/smc: fix deadlock triggered by cancel_delayed_work_syn() The following LOCKDEP was detected: Workqueue: events smc_lgr_free_work [smc] WARNING: possible circular locking dependency detected 6.1.0-20221027.rc2.git8.56bc5b569087.300.fc36.s390x+debug #1 Not tainted ------------------------------------------------------ kworker/3:0/176251 is trying to acquire lock: 00000000f1467148 ((wq_completion)smc_tx_wq-00000000#2){+.+.}-{0:0}, at: __flush_workqueue+0x7a/0x4f0 but task is already holding lock: 0000037fffe97dc8 ((work_completion)(&(&lgr->free_work)->work)){+.+.}-{0:0}, at: process_one_work+0x232/0x730 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #4 ((work_completion)(&(&lgr->free_work)->work)){+.+.}-{0:0}: __lock_acquire+0x58e/0xbd8 lock_acquire.part.0+0xe2/0x248 lock_acquire+0xac/0x1c8 __flush_work+0x76/0xf0 __cancel_work_timer+0x170/0x220 __smc_lgr_terminate.part.0+0x34/0x1c0 [smc] smc_connect_rdma+0x15e/0x418 [smc] __smc_connect+0x234/0x480 [smc] smc_connect+0x1d6/0x230 [smc] __sys_connect+0x90/0xc0 __do_sys_socketcall+0x186/0x370 __do_syscall+0x1da/0x208 system_call+0x82/0xb0 -> #3 (smc_client_lgr_pending){+.+.}-{3:3}: __lock_acquire+0x58e/0xbd8 lock_acquire.part.0+0xe2/0x248 lock_acquire+0xac/0x1c8 __mutex_lock+0x96/0x8e8 mutex_lock_nested+0x32/0x40 smc_connect_rdma+0xa4/0x418 [smc] __smc_connect+0x234/0x480 [smc] smc_connect+0x1d6/0x230 [smc] __sys_connect+0x90/0xc0 __do_sys_socketcall+0x186/0x370 __do_syscall+0x1da/0x208 system_call+0x82/0xb0 -> #2 (sk_lock-AF_SMC){+.+.}-{0:0}: __lock_acquire+0x58e/0xbd8 lock_acquire.part.0+0xe2/0x248 lock_acquire+0xac/0x1c8 lock_sock_nested+0x46/0xa8 smc_tx_work+0x34/0x50 [smc] process_one_work+0x30c/0x730 worker_thread+0x62/0x420 kthread+0x138/0x150 __ret_from_fork+0x3c/0x58 ret_from_fork+0xa/0x40 -> #1 ((work_completion)(&(&smc->conn.tx_work)->work)){+.+.}-{0:0}: __lock_acquire+0x58e/0xbd8 lock_acquire.part.0+0xe2/0x248 lock_acquire+0xac/0x1c8 process_one_work+0x2bc/0x730 worker_thread+0x62/0x420 kthread+0x138/0x150 __ret_from_fork+0x3c/0x58 ret_from_fork+0xa/0x40 -> #0 ((wq_completion)smc_tx_wq-00000000#2){+.+.}-{0:0}: check_prev_add+0xd8/0xe88 validate_chain+0x70c/0xb20 __lock_acquire+0x58e/0xbd8 lock_acquire.part.0+0xe2/0x248 lock_acquire+0xac/0x1c8 __flush_workqueue+0xaa/0x4f0 drain_workqueue+0xaa/0x158 destroy_workqueue+0x44/0x2d8 smc_lgr_free+0x9e/0xf8 [smc] process_one_work+0x30c/0x730 worker_thread+0x62/0x420 kthread+0x138/0x150 __ret_from_fork+0x3c/0x58 ret_from_fork+0xa/0x40 other info that might help us debug this: Chain exists of: (wq_completion)smc_tx_wq-00000000#2 --> smc_client_lgr_pending --> (work_completion)(&(&lgr->free_work)->work) Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock((work_completion)(&(&lgr->free_work)->work)); lock(smc_client_lgr_pending); lock((work_completion) (&(&lgr->free_work)->work)); lock((wq_completion)smc_tx_wq-00000000#2); *** DEADLOCK *** 2 locks held by kworker/3:0/176251: #0: 0000000080183548 ((wq_completion)events){+.+.}-{0:0}, at: process_one_work+0x232/0x730 #1: 0000037fffe97dc8 ((work_completion) (&(&lgr->free_work)->work)){+.+.}-{0:0}, at: process_one_work+0x232/0x730 stack backtr ---truncated---
CVE-2025-39832 1 Linux 1 Linux Kernel 2025-12-03 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: net/mlx5: Fix lockdep assertion on sync reset unload event Fix lockdep assertion triggered during sync reset unload event. When the sync reset flow is initiated using the devlink reload fw_activate option, the PF already holds the devlink lock while handling unload event. In this case, delegate sync reset unload event handling back to the devlink callback process to avoid double-locking and resolve the lockdep warning. Kernel log: WARNING: CPU: 9 PID: 1578 at devl_assert_locked+0x31/0x40 [...] Call Trace: <TASK> mlx5_unload_one_devl_locked+0x2c/0xc0 [mlx5_core] mlx5_sync_reset_unload_event+0xaf/0x2f0 [mlx5_core] process_one_work+0x222/0x640 worker_thread+0x199/0x350 kthread+0x10b/0x230 ? __pfx_worker_thread+0x10/0x10 ? __pfx_kthread+0x10/0x10 ret_from_fork+0x8e/0x100 ? __pfx_kthread+0x10/0x10 ret_from_fork_asm+0x1a/0x30 </TASK>
CVE-2023-53281 1 Linux 1 Linux Kernel 2025-12-02 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: drivers: staging: rtl8723bs: Fix locking in _rtw_join_timeout_handler() Commit 041879b12ddb ("drivers: staging: rtl8192bs: Fix deadlock in rtw_joinbss_event_prehandle()") besides fixing the deadlock also modified _rtw_join_timeout_handler() to use spin_[un]lock_irq() instead of spin_[un]lock_bh(). _rtw_join_timeout_handler() calls rtw_do_join() which takes pmlmepriv->scanned_queue.lock using spin_[un]lock_bh(). This spin_unlock_bh() call re-enables softirqs which triggers an oops in kernel/softirq.c: __local_bh_enable_ip() when it calls lockdep_assert_irqs_enabled(): [ 244.506087] WARNING: CPU: 2 PID: 0 at kernel/softirq.c:376 __local_bh_enable_ip+0xa6/0x100 ... [ 244.509022] Call Trace: [ 244.509048] <IRQ> [ 244.509100] _rtw_join_timeout_handler+0x134/0x170 [r8723bs] [ 244.509468] ? __pfx__rtw_join_timeout_handler+0x10/0x10 [r8723bs] [ 244.509772] ? __pfx__rtw_join_timeout_handler+0x10/0x10 [r8723bs] [ 244.510076] call_timer_fn+0x95/0x2a0 [ 244.510200] __run_timers.part.0+0x1da/0x2d0 This oops is causd by the switch to spin_[un]lock_irq() which disables the IRQs for the entire duration of _rtw_join_timeout_handler(). Disabling the IRQs is not necessary since all code taking this lock runs from either user contexts or from softirqs, switch back to spin_[un]lock_bh() to fix this.
CVE-2025-38643 1 Linux 1 Linux Kernel 2025-12-01 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: wifi: cfg80211: Add missing lock in cfg80211_check_and_end_cac() Callers of wdev_chandef() must hold the wiphy mutex. But the worker cfg80211_propagate_cac_done_wk() never takes the lock. Which triggers the warning below with the mesh_peer_connected_dfs test from hostapd and not (yet) released mac80211 code changes: WARNING: CPU: 0 PID: 495 at net/wireless/chan.c:1552 wdev_chandef+0x60/0x165 Modules linked in: CPU: 0 UID: 0 PID: 495 Comm: kworker/u4:2 Not tainted 6.14.0-rc5-wt-g03960e6f9d47 #33 13c287eeabfe1efea01c0bcc863723ab082e17cf Workqueue: cfg80211 cfg80211_propagate_cac_done_wk Stack: 00000000 00000001 ffffff00 6093267c 00000000 6002ec30 6d577c50 60037608 00000000 67e8d108 6063717b 00000000 Call Trace: [<6002ec30>] ? _printk+0x0/0x98 [<6003c2b3>] show_stack+0x10e/0x11a [<6002ec30>] ? _printk+0x0/0x98 [<60037608>] dump_stack_lvl+0x71/0xb8 [<6063717b>] ? wdev_chandef+0x60/0x165 [<6003766d>] dump_stack+0x1e/0x20 [<6005d1b7>] __warn+0x101/0x20f [<6005d3a8>] warn_slowpath_fmt+0xe3/0x15d [<600b0c5c>] ? mark_lock.part.0+0x0/0x4ec [<60751191>] ? __this_cpu_preempt_check+0x0/0x16 [<600b11a2>] ? mark_held_locks+0x5a/0x6e [<6005d2c5>] ? warn_slowpath_fmt+0x0/0x15d [<60052e53>] ? unblock_signals+0x3a/0xe7 [<60052f2d>] ? um_set_signals+0x2d/0x43 [<60751191>] ? __this_cpu_preempt_check+0x0/0x16 [<607508b2>] ? lock_is_held_type+0x207/0x21f [<6063717b>] wdev_chandef+0x60/0x165 [<605f89b4>] regulatory_propagate_dfs_state+0x247/0x43f [<60052f00>] ? um_set_signals+0x0/0x43 [<605e6bfd>] cfg80211_propagate_cac_done_wk+0x3a/0x4a [<6007e460>] process_scheduled_works+0x3bc/0x60e [<6007d0ec>] ? move_linked_works+0x4d/0x81 [<6007d120>] ? assign_work+0x0/0xaa [<6007f81f>] worker_thread+0x220/0x2dc [<600786ef>] ? set_pf_worker+0x0/0x57 [<60087c96>] ? to_kthread+0x0/0x43 [<6008ab3c>] kthread+0x2d3/0x2e2 [<6007f5ff>] ? worker_thread+0x0/0x2dc [<6006c05b>] ? calculate_sigpending+0x0/0x56 [<6003b37d>] new_thread_handler+0x4a/0x64 irq event stamp: 614611 hardirqs last enabled at (614621): [<00000000600bc96b>] __up_console_sem+0x82/0xaf hardirqs last disabled at (614630): [<00000000600bc92c>] __up_console_sem+0x43/0xaf softirqs last enabled at (614268): [<00000000606c55c6>] __ieee80211_wake_queue+0x933/0x985 softirqs last disabled at (614266): [<00000000606c52d6>] __ieee80211_wake_queue+0x643/0x985