Total
1931 CVE
CVE | Vendors | Products | Updated | CVSS v2 | CVSS v3 |
---|---|---|---|---|---|
CVE-2002-0368 | 1 Microsoft | 1 Exchange Server | 2025-04-03 | 5.0 MEDIUM | N/A |
The Store Service in Microsoft Exchange 2000 allows remote attackers to cause a denial of service (CPU consumption) via a mail message with a malformed RFC message attribute, aka "Malformed Mail Attribute can Cause Exchange 2000 to Exhaust CPU Resources." | |||||
CVE-2005-2309 | 1 Opera | 1 Opera Browser | 2025-04-03 | 5.0 MEDIUM | N/A |
Opera 8.01 allows remote attackers to cause a denial of service (CPU consumption) via a crafted JPEG image, as demonstrated using random.jpg. | |||||
CVE-2002-1873 | 1 Microsoft | 1 Exchange Server | 2025-04-03 | 5.0 MEDIUM | N/A |
Microsoft Exchange 2000, when used with Microsoft Remote Procedure Call (MSRPC), allows remote attackers to cause a denial of service (crash or memory consumption) via malformed MSRPC calls. | |||||
CVE-2001-0666 | 1 Microsoft | 1 Exchange Server | 2025-04-03 | 2.1 LOW | N/A |
Outlook Web Access (OWA) in Microsoft Exchange 2000 allows an authenticated user to cause a denial of service (CPU consumption) via a malformed OWA request for a deeply nested folder within the user's mailbox. | |||||
CVE-2005-1260 | 4 Apple, Bzip, Canonical and 1 more | 4 Mac Os X, Bzip2, Ubuntu Linux and 1 more | 2025-04-03 | 5.0 MEDIUM | N/A |
bzip2 allows remote attackers to cause a denial of service (hard drive consumption) via a crafted bzip2 file that causes an infinite loop (a.k.a "decompression bomb"). | |||||
CVE-2004-1201 | 1 Opera | 1 Opera Browser | 2025-04-03 | 5.0 MEDIUM | N/A |
Opera 7.54 allows remote attackers to cause a denial of service (application crash from memory exhaustion), as demonstrated using Javascript code that continuously creates nested arrays and then sorts the newly created arrays. | |||||
CVE-2005-0738 | 1 Microsoft | 1 Exchange Server | 2025-04-03 | 5.0 MEDIUM | N/A |
Stack consumption vulnerability in Microsoft Exchange Server 2003 SP1 allows users to cause a denial of service (hang) by deleting or moving a folder with deeply nested subfolders, which causes Microsoft Exchange Information Store service (Store.exe) to hang as a result of a large number of recursive calls. | |||||
CVE-2002-1876 | 1 Microsoft | 1 Exchange Server | 2025-04-03 | 2.1 LOW | N/A |
Microsoft Exchange 2000 allows remote authenticated attackers to cause a denial of service via a large number of rapid requests, which consumes all of the licenses that are granted to Exchange by IIS. | |||||
CVE-2006-1364 | 1 Microsoft | 1 Asp.net | 2025-04-03 | 7.8 HIGH | 7.5 HIGH |
Microsoft w3wp (aka w3wp.exe) does not properly handle when the AspCompat directive is not used when referencing COM components in ASP.NET, which allows remote attackers to cause a denial of service (resource consumption or crash) by repeatedly requesting each of several documents that refer to COM components, or are restricted documents located under the ASP.NET application path. | |||||
CVE-2025-0453 | 1 Lfprojects | 1 Mlflow | 2025-04-02 | N/A | 7.5 HIGH |
In mlflow/mlflow version 2.17.2, the `/graphql` endpoint is vulnerable to a denial of service attack. An attacker can create large batches of queries that repeatedly request all runs from a given experiment. This can tie up all the workers allocated by MLFlow, rendering the application unable to respond to other requests. This vulnerability is due to uncontrolled resource consumption. | |||||
CVE-2023-20922 | 1 Google | 1 Android | 2025-04-02 | N/A | 5.5 MEDIUM |
In setMimeGroup of PackageManagerService.java, there is a possible crash loop due to resource exhaustion. This could lead to local denial of service with no additional execution privileges needed. User interaction is not needed for exploitation.Product: AndroidVersions: Android-11 Android-12 Android-12L Android-13Android ID: A-237291548 | |||||
CVE-2021-47368 | 1 Linux | 1 Linux Kernel | 2025-04-02 | N/A | 8.1 HIGH |
In the Linux kernel, the following vulnerability has been resolved: enetc: Fix illegal access when reading affinity_hint irq_set_affinity_hit() stores a reference to the cpumask_t parameter in the irq descriptor, and that reference can be accessed later from irq_affinity_hint_proc_show(). Since the cpu_mask parameter passed to irq_set_affinity_hit() has only temporary storage (it's on the stack memory), later accesses to it are illegal. Thus reads from the corresponding procfs affinity_hint file can result in paging request oops. The issue is fixed by the get_cpu_mask() helper, which provides a permanent storage for the cpumask_t parameter. | |||||
CVE-2021-47371 | 1 Linux | 1 Linux Kernel | 2025-04-02 | N/A | 7.1 HIGH |
In the Linux kernel, the following vulnerability has been resolved: nexthop: Fix memory leaks in nexthop notification chain listeners syzkaller discovered memory leaks [1] that can be reduced to the following commands: # ip nexthop add id 1 blackhole # devlink dev reload pci/0000:06:00.0 As part of the reload flow, mlxsw will unregister its netdevs and then unregister from the nexthop notification chain. Before unregistering from the notification chain, mlxsw will receive delete notifications for nexthop objects using netdevs registered by mlxsw or their uppers. mlxsw will not receive notifications for nexthops using netdevs that are not dismantled as part of the reload flow. For example, the blackhole nexthop above that internally uses the loopback netdev as its nexthop device. One way to fix this problem is to have listeners flush their nexthop tables after unregistering from the notification chain. This is error-prone as evident by this patch and also not symmetric with the registration path where a listener receives a dump of all the existing nexthops. Therefore, fix this problem by replaying delete notifications for the listener being unregistered. This is symmetric to the registration path and also consistent with the netdev notification chain. The above means that unregister_nexthop_notifier(), like register_nexthop_notifier(), will have to take RTNL in order to iterate over the existing nexthops and that any callers of the function cannot hold RTNL. This is true for mlxsw and netdevsim, but not for the VXLAN driver. To avoid a deadlock, change the latter to unregister its nexthop listener without holding RTNL, making it symmetric to the registration path. [1] unreferenced object 0xffff88806173d600 (size 512): comm "syz-executor.0", pid 1290, jiffies 4295583142 (age 143.507s) hex dump (first 32 bytes): 41 9d 1e 60 80 88 ff ff 08 d6 73 61 80 88 ff ff A..`......sa.... 08 d6 73 61 80 88 ff ff 01 00 00 00 00 00 00 00 ..sa............ backtrace: [<ffffffff81a6b576>] kmemleak_alloc_recursive include/linux/kmemleak.h:43 [inline] [<ffffffff81a6b576>] slab_post_alloc_hook+0x96/0x490 mm/slab.h:522 [<ffffffff81a716d3>] slab_alloc_node mm/slub.c:3206 [inline] [<ffffffff81a716d3>] slab_alloc mm/slub.c:3214 [inline] [<ffffffff81a716d3>] kmem_cache_alloc_trace+0x163/0x370 mm/slub.c:3231 [<ffffffff82e8681a>] kmalloc include/linux/slab.h:591 [inline] [<ffffffff82e8681a>] kzalloc include/linux/slab.h:721 [inline] [<ffffffff82e8681a>] mlxsw_sp_nexthop_obj_group_create drivers/net/ethernet/mellanox/mlxsw/spectrum_router.c:4918 [inline] [<ffffffff82e8681a>] mlxsw_sp_nexthop_obj_new drivers/net/ethernet/mellanox/mlxsw/spectrum_router.c:5054 [inline] [<ffffffff82e8681a>] mlxsw_sp_nexthop_obj_event+0x59a/0x2910 drivers/net/ethernet/mellanox/mlxsw/spectrum_router.c:5239 [<ffffffff813ef67d>] notifier_call_chain+0xbd/0x210 kernel/notifier.c:83 [<ffffffff813f0662>] blocking_notifier_call_chain kernel/notifier.c:318 [inline] [<ffffffff813f0662>] blocking_notifier_call_chain+0x72/0xa0 kernel/notifier.c:306 [<ffffffff8384b9c6>] call_nexthop_notifiers+0x156/0x310 net/ipv4/nexthop.c:244 [<ffffffff83852bd8>] insert_nexthop net/ipv4/nexthop.c:2336 [inline] [<ffffffff83852bd8>] nexthop_add net/ipv4/nexthop.c:2644 [inline] [<ffffffff83852bd8>] rtm_new_nexthop+0x14e8/0x4d10 net/ipv4/nexthop.c:2913 [<ffffffff833e9a78>] rtnetlink_rcv_msg+0x448/0xbf0 net/core/rtnetlink.c:5572 [<ffffffff83608703>] netlink_rcv_skb+0x173/0x480 net/netlink/af_netlink.c:2504 [<ffffffff833de032>] rtnetlink_rcv+0x22/0x30 net/core/rtnetlink.c:5590 [<ffffffff836069de>] netlink_unicast_kernel net/netlink/af_netlink.c:1314 [inline] [<ffffffff836069de>] netlink_unicast+0x5ae/0x7f0 net/netlink/af_netlink.c:1340 [<ffffffff83607501>] netlink_sendmsg+0x8e1/0xe30 net/netlink/af_netlink.c:1929 [<ffffffff832fde84>] sock_sendmsg_nosec net/socket.c:704 [inline ---truncated--- | |||||
CVE-2021-47284 | 1 Linux | 1 Linux Kernel | 2025-04-02 | N/A | 4.7 MEDIUM |
In the Linux kernel, the following vulnerability has been resolved: isdn: mISDN: netjet: Fix crash in nj_probe: 'nj_setup' in netjet.c might fail with -EIO and in this case 'card->irq' is initialized and is bigger than zero. A subsequent call to 'nj_release' will free the irq that has not been requested. Fix this bug by deleting the previous assignment to 'card->irq' and just keep the assignment before 'request_irq'. The KASAN's log reveals it: [ 3.354615 ] WARNING: CPU: 0 PID: 1 at kernel/irq/manage.c:1826 free_irq+0x100/0x480 [ 3.355112 ] Modules linked in: [ 3.355310 ] CPU: 0 PID: 1 Comm: swapper/0 Not tainted 5.13.0-rc1-00144-g25a1298726e #13 [ 3.355816 ] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.12.0-59-gc9ba5276e321-prebuilt.qemu.org 04/01/2014 [ 3.356552 ] RIP: 0010:free_irq+0x100/0x480 [ 3.356820 ] Code: 6e 08 74 6f 4d 89 f4 e8 5e ac 09 00 4d 8b 74 24 18 4d 85 f6 75 e3 e8 4f ac 09 00 8b 75 c8 48 c7 c7 78 c1 2e 85 e8 e0 cf f5 ff <0f> 0b 48 8b 75 c0 4c 89 ff e8 72 33 0b 03 48 8b 43 40 4c 8b a0 80 [ 3.358012 ] RSP: 0000:ffffc90000017b48 EFLAGS: 00010082 [ 3.358357 ] RAX: 0000000000000000 RBX: ffff888104dc8000 RCX: 0000000000000000 [ 3.358814 ] RDX: ffff8881003c8000 RSI: ffffffff8124a9e6 RDI: 00000000ffffffff [ 3.359272 ] RBP: ffffc90000017b88 R08: 0000000000000000 R09: 0000000000000000 [ 3.359732 ] R10: ffffc900000179f0 R11: 0000000000001d04 R12: 0000000000000000 [ 3.360195 ] R13: ffff888107dc6000 R14: ffff888107dc6928 R15: ffff888104dc80a8 [ 3.360652 ] FS: 0000000000000000(0000) GS:ffff88817bc00000(0000) knlGS:0000000000000000 [ 3.361170 ] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 3.361538 ] CR2: 0000000000000000 CR3: 000000000582e000 CR4: 00000000000006f0 [ 3.362003 ] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 3.362175 ] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [ 3.362175 ] Call Trace: [ 3.362175 ] nj_release+0x51/0x1e0 [ 3.362175 ] nj_probe+0x450/0x950 [ 3.362175 ] ? pci_device_remove+0x110/0x110 [ 3.362175 ] local_pci_probe+0x45/0xa0 [ 3.362175 ] pci_device_probe+0x12b/0x1d0 [ 3.362175 ] really_probe+0x2a9/0x610 [ 3.362175 ] driver_probe_device+0x90/0x1d0 [ 3.362175 ] ? mutex_lock_nested+0x1b/0x20 [ 3.362175 ] device_driver_attach+0x68/0x70 [ 3.362175 ] __driver_attach+0x124/0x1b0 [ 3.362175 ] ? device_driver_attach+0x70/0x70 [ 3.362175 ] bus_for_each_dev+0xbb/0x110 [ 3.362175 ] ? rdinit_setup+0x45/0x45 [ 3.362175 ] driver_attach+0x27/0x30 [ 3.362175 ] bus_add_driver+0x1eb/0x2a0 [ 3.362175 ] driver_register+0xa9/0x180 [ 3.362175 ] __pci_register_driver+0x82/0x90 [ 3.362175 ] ? w6692_init+0x38/0x38 [ 3.362175 ] nj_init+0x36/0x38 [ 3.362175 ] do_one_initcall+0x7f/0x3d0 [ 3.362175 ] ? rdinit_setup+0x45/0x45 [ 3.362175 ] ? rcu_read_lock_sched_held+0x4f/0x80 [ 3.362175 ] kernel_init_freeable+0x2aa/0x301 [ 3.362175 ] ? rest_init+0x2c0/0x2c0 [ 3.362175 ] kernel_init+0x18/0x190 [ 3.362175 ] ? rest_init+0x2c0/0x2c0 [ 3.362175 ] ? rest_init+0x2c0/0x2c0 [ 3.362175 ] ret_from_fork+0x1f/0x30 [ 3.362175 ] Kernel panic - not syncing: panic_on_warn set ... [ 3.362175 ] CPU: 0 PID: 1 Comm: swapper/0 Not tainted 5.13.0-rc1-00144-g25a1298726e #13 [ 3.362175 ] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.12.0-59-gc9ba5276e321-prebuilt.qemu.org 04/01/2014 [ 3.362175 ] Call Trace: [ 3.362175 ] dump_stack+0xba/0xf5 [ 3.362175 ] ? free_irq+0x100/0x480 [ 3.362175 ] panic+0x15a/0x3f2 [ 3.362175 ] ? __warn+0xf2/0x150 [ 3.362175 ] ? free_irq+0x100/0x480 [ 3.362175 ] __warn+0x108/0x150 [ 3.362175 ] ? free_irq+0x100/0x480 [ 3.362175 ] report_bug+0x119/0x1c0 [ 3.362175 ] handle_bug+0x3b/0x80 [ 3.362175 ] exc_invalid_op+0x18/0x70 [ 3.362175 ] asm_exc_invalid_op+0x12/0x20 [ 3.362175 ] RIP: 0010:free_irq+0x100 ---truncated--- | |||||
CVE-2021-47295 | 1 Linux | 1 Linux Kernel | 2025-04-02 | N/A | 7.5 HIGH |
In the Linux kernel, the following vulnerability has been resolved: net: sched: fix memory leak in tcindex_partial_destroy_work Syzbot reported memory leak in tcindex_set_parms(). The problem was in non-freed perfect hash in tcindex_partial_destroy_work(). In tcindex_set_parms() new tcindex_data is allocated and some fields from old one are copied to new one, but not the perfect hash. Since tcindex_partial_destroy_work() is the destroy function for old tcindex_data, we need to free perfect hash to avoid memory leak. | |||||
CVE-2021-47313 | 1 Linux | 1 Linux Kernel | 2025-04-02 | N/A | 8.4 HIGH |
In the Linux kernel, the following vulnerability has been resolved: cpufreq: CPPC: Fix potential memleak in cppc_cpufreq_cpu_init It's a classic example of memleak, we allocate something, we fail and never free the resources. Make sure we free all resources on policy ->init() failures. | |||||
CVE-2021-47329 | 1 Linux | 1 Linux Kernel | 2025-04-02 | N/A | 6.2 MEDIUM |
In the Linux kernel, the following vulnerability has been resolved: scsi: megaraid_sas: Fix resource leak in case of probe failure The driver doesn't clean up all the allocated resources properly when scsi_add_host(), megasas_start_aen() function fails during the PCI device probe. Clean up all those resources. | |||||
CVE-2025-27669 | 1 Printerlogic | 2 Vasion Print, Virtual Appliance | 2025-04-01 | N/A | 7.5 HIGH |
Vasion Print (formerly PrinterLogic) before Virtual Appliance Host 22.0.843 Application 20.0.1923 allows Remote Network Scanning (XSPA)/DoS OVE-20230524-0013. | |||||
CVE-2024-12910 | 1 Llamaindex | 1 Llamaindex | 2025-04-01 | N/A | 5.9 MEDIUM |
A vulnerability in the `KnowledgeBaseWebReader` class of the run-llama/llama_index repository, version latest, allows an attacker to cause a Denial of Service (DoS) by controlling a URL variable to contain the root URL. This leads to infinite recursive calls to the `get_article_urls` method, exhausting system resources and potentially crashing the application. | |||||
CVE-2024-6838 | 1 Lfprojects | 1 Mlflow | 2025-04-01 | N/A | 5.3 MEDIUM |
In mlflow/mlflow version v2.13.2, a vulnerability exists that allows the creation or renaming of an experiment with a large number of integers in its name due to the lack of a limit on the experiment name. This can cause the MLflow UI panel to become unresponsive, leading to a potential denial of service. Additionally, there is no character limit in the `artifact_location` parameter while creating the experiment. |