Filtered by vendor Apache
Subscribe
Total
2472 CVE
CVE | Vendors | Products | Updated | CVSS v2 | CVSS v3 |
---|---|---|---|---|---|
CVE-2020-1956 | 1 Apache | 1 Kylin | 2025-02-06 | 9.0 HIGH | 8.8 HIGH |
Apache Kylin 2.3.0, and releases up to 2.6.5 and 3.0.1 has some restful apis which will concatenate os command with the user input string, a user is likely to be able to execute any os command without any protection or validation. | |||||
CVE-2020-11978 | 1 Apache | 1 Airflow | 2025-02-06 | 6.5 MEDIUM | 8.8 HIGH |
An issue was found in Apache Airflow versions 1.10.10 and below. A remote code/command injection vulnerability was discovered in one of the example DAGs shipped with Airflow which would allow any authenticated user to run arbitrary commands as the user running airflow worker/scheduler (depending on the executor in use). If you already have examples disabled by setting load_examples=False in the config then you are not vulnerable. | |||||
CVE-2024-45195 | 1 Apache | 1 Ofbiz | 2025-02-05 | N/A | 7.5 HIGH |
Direct Request ('Forced Browsing') vulnerability in Apache OFBiz. This issue affects Apache OFBiz: before 18.12.16. Users are recommended to upgrade to version 18.12.16, which fixes the issue. | |||||
CVE-2024-50386 | 1 Apache | 1 Cloudstack | 2025-02-04 | N/A | 8.5 HIGH |
Account users in Apache CloudStack by default are allowed to register templates to be downloaded directly to the primary storage for deploying instances. Due to missing validation checks for KVM-compatible templates in CloudStack 4.0.0 through 4.18.2.4 and 4.19.0.0 through 4.19.1.2, an attacker that can register templates, can use them to deploy malicious instances on KVM-based environments and exploit this to gain access to the host filesystems that could result in the compromise of resource integrity and confidentiality, data loss, denial of service, and availability of KVM-based infrastructure managed by CloudStack. Users are recommended to upgrade to Apache CloudStack 4.18.2.5 or 4.19.1.3, or later, which addresses this issue. Additionally, all user-registered KVM-compatible templates can be scanned and checked that they are flat files that should not be using any additional or unnecessary features. For example, operators can run the following command on their file-based primary storage(s) and inspect the output. An empty output for the disk being validated means it has no references to the host filesystems; on the other hand, if the output for the disk being validated is not empty, it might indicate a compromised disk. However, bear in mind that (i) volumes created from templates will have references for the templates at first and (ii) volumes can be consolidated while migrating, losing their references to the templates. Therefore, the command execution for the primary storages can show both false positives and false negatives. for file in $(find /path/to/storage/ -type f -regex [a-f0-9\-]*.*); do echo "Retrieving file [$file] info. If the output is not empty, that might indicate a compromised disk; check it carefully."; qemu-img info -U $file | grep file: ; printf "\n\n"; done For checking the whole template/volume features of each disk, operators can run the following command: for file in $(find /path/to/storage/ -type f -regex [a-f0-9\-]*.*); do echo "Retrieving file [$file] info."; qemu-img info -U $file; printf "\n\n"; done | |||||
CVE-2022-24706 | 1 Apache | 1 Couchdb | 2025-01-29 | 10.0 HIGH | 9.8 CRITICAL |
In Apache CouchDB prior to 3.2.2, an attacker can access an improperly secured default installation without authenticating and gain admin privileges. The CouchDB documentation has always made recommendations for properly securing an installation, including recommending using a firewall in front of all CouchDB installations. | |||||
CVE-2024-29834 | 1 Apache | 1 Pulsar | 2025-01-24 | N/A | 6.4 MEDIUM |
This vulnerability allows authenticated users with produce or consume permissions to perform unauthorized operations on partitioned topics, such as unloading topics and triggering compaction. These management operations should be restricted to users with the tenant admin role or superuser role. An authenticated user with produce permission can create subscriptions and update subscription properties on partitioned topics, even though this should be limited to users with consume permissions. This impact analysis assumes that Pulsar has been configured with the default authorization provider. For custom authorization providers, the impact could be slightly different. Additionally, the vulnerability allows an authenticated user to read, create, modify, and delete namespace properties in any namespace in any tenant. In Pulsar, namespace properties are reserved for user provided metadata about the namespace. This issue affects Apache Pulsar versions from 2.7.1 to 2.10.6, from 2.11.0 to 2.11.4, from 3.0.0 to 3.0.3, from 3.1.0 to 3.1.3, and from 3.2.0 to 3.2.1. 3.0 Apache Pulsar users should upgrade to at least 3.0.4. 3.1 and 3.2 Apache Pulsar users should upgrade to at least 3.2.2. Users operating versions prior to those listed above should upgrade to the aforementioned patched versions or newer versions. | |||||
CVE-2022-34321 | 1 Apache | 1 Pulsar | 2025-01-22 | N/A | 8.2 HIGH |
Improper Authentication vulnerability in Apache Pulsar Proxy allows an attacker to connect to the /proxy-stats endpoint without authentication. The vulnerable endpoint exposes detailed statistics about live connections, along with the capability to modify the logging level of proxied connections without requiring proper authentication credentials. This issue affects Apache Pulsar versions from 2.6.0 to 2.10.5, from 2.11.0 to 2.11.2, from 3.0.0 to 3.0.1, and 3.1.0. The known risks include exposing sensitive information such as connected client IP and unauthorized logging level manipulation which could lead to a denial-of-service condition by significantly increasing the proxy's logging overhead. When deployed via the Apache Pulsar Helm chart within Kubernetes environments, the actual client IP might not be revealed through the load balancer's default behavior, which typically obscures the original source IP addresses when externalTrafficPolicy is being configured to "Cluster" by default. The /proxy-stats endpoint contains topic level statistics, however, in the default configuration, the topic level statistics aren't known to be exposed. 2.10 Pulsar Proxy users should upgrade to at least 2.10.6. 2.11 Pulsar Proxy users should upgrade to at least 2.11.3. 3.0 Pulsar Proxy users should upgrade to at least 3.0.2. 3.1 Pulsar Proxy users should upgrade to at least 3.1.1. Users operating versions prior to those listed above should upgrade to the aforementioned patched versions or newer versions. Additionally, it's imperative to recognize that the Apache Pulsar Proxy is not intended for direct exposure to the internet. The architectural design of Pulsar Proxy assumes that it will operate within a secured network environment, safeguarded by appropriate perimeter defenses. | |||||
CVE-2024-27317 | 1 Apache | 1 Pulsar | 2025-01-19 | N/A | 8.4 HIGH |
In Pulsar Functions Worker, authenticated users can upload functions in jar or nar files. These files, essentially zip files, are extracted by the Functions Worker. However, if a malicious file is uploaded, it could exploit a directory traversal vulnerability. This occurs when the filenames in the zip files, which aren't properly validated, contain special elements like "..", altering the directory path. This could allow an attacker to create or modify files outside of the designated extraction directory, potentially influencing system behavior. This vulnerability also applies to the Pulsar Broker when it is configured with "functionsWorkerEnabled=true". This issue affects Apache Pulsar versions from 2.4.0 to 2.10.5, from 2.11.0 to 2.11.3, from 3.0.0 to 3.0.2, from 3.1.0 to 3.1.2, and 3.2.0. 2.10 Pulsar Function Worker users should upgrade to at least 2.10.6. 2.11 Pulsar Function Worker users should upgrade to at least 2.11.4. 3.0 Pulsar Function Worker users should upgrade to at least 3.0.3. 3.1 Pulsar Function Worker users should upgrade to at least 3.1.3. 3.2 Pulsar Function Worker users should upgrade to at least 3.2.1. Users operating versions prior to those listed above should upgrade to the aforementioned patched versions or newer versions. | |||||
CVE-2024-27894 | 1 Apache | 1 Pulsar | 2025-01-19 | N/A | 8.5 HIGH |
The Pulsar Functions Worker includes a capability that permits authenticated users to create functions where the function's implementation is referenced by a URL. The supported URL schemes include "file", "http", and "https". When a function is created using this method, the Functions Worker will retrieve the implementation from the URL provided by the user. However, this feature introduces a vulnerability that can be exploited by an attacker to gain unauthorized access to any file that the Pulsar Functions Worker process has permissions to read. This includes reading the process environment which potentially includes sensitive information, such as secrets. Furthermore, an attacker could leverage this vulnerability to use the Pulsar Functions Worker as a proxy to access the content of remote HTTP and HTTPS endpoint URLs. This could also be used to carry out denial of service attacks. This vulnerability also applies to the Pulsar Broker when it is configured with "functionsWorkerEnabled=true". This issue affects Apache Pulsar versions from 2.4.0 to 2.10.5, from 2.11.0 to 2.11.3, from 3.0.0 to 3.0.2, from 3.1.0 to 3.1.2, and 3.2.0. 2.10 Pulsar Function Worker users should upgrade to at least 2.10.6. 2.11 Pulsar Function Worker users should upgrade to at least 2.11.4. 3.0 Pulsar Function Worker users should upgrade to at least 3.0.3. 3.1 Pulsar Function Worker users should upgrade to at least 3.1.3. 3.2 Pulsar Function Worker users should upgrade to at least 3.2.1. Users operating versions prior to those listed above should upgrade to the aforementioned patched versions or newer versions. The updated versions of Pulsar Functions Worker will, by default, impose restrictions on the creation of functions using URLs. For users who rely on this functionality, the Function Worker configuration provides two configuration keys: "additionalEnabledConnectorUrlPatterns" and "additionalEnabledFunctionsUrlPatterns". These keys allow users to specify a set of URL patterns that are permitted, enabling the creation of functions using URLs that match the defined patterns. This approach ensures that the feature remains available to those who require it, while limiting the potential for unauthorized access and exploitation. | |||||
CVE-2023-51388 | 1 Apache | 1 Hertzbeat | 2025-01-16 | N/A | 9.8 CRITICAL |
Hertzbeat is a real-time monitoring system. In `CalculateAlarm.java`, `AviatorEvaluator` is used to directly execute the expression function, and no security policy is configured, resulting in AviatorScript (which can execute any static method by default) script injection. Version 1.4.1 fixes this vulnerability. | |||||
CVE-2023-51389 | 1 Apache | 1 Hertzbeat | 2025-01-16 | N/A | 9.8 CRITICAL |
Hertzbeat is a real-time monitoring system. At the interface of `/define/yml`, SnakeYAML is used as a parser to parse yml content, but no security configuration is used, resulting in a YAML deserialization vulnerability. Version 1.4.1 fixes this vulnerability. | |||||
CVE-2023-51653 | 1 Apache | 1 Hertzbeat | 2025-01-16 | N/A | 9.8 CRITICAL |
Hertzbeat is a real-time monitoring system. In the implementation of `JmxCollectImpl.java`, `JMXConnectorFactory.connect` is vulnerable to JNDI injection. The corresponding interface is `/api/monitor/detect`. If there is a URL field, the address will be used by default. When the URL is `service:jmx:rmi:///jndi/rmi://xxxxxxx:1099/localHikari`, it can be exploited to cause remote code execution. Version 1.4.1 contains a fix for this issue. | |||||
CVE-2024-23807 | 1 Apache | 1 Xerces-c\+\+ | 2025-01-16 | N/A | 9.8 CRITICAL |
The Apache Xerces C++ XML parser on versions 3.0.0 before 3.2.5 contains a use-after-free error triggered during the scanning of external DTDs. Users are recommended to upgrade to version 3.2.5 which fixes the issue, or mitigate the issue by disabling DTD processing. This can be accomplished via the DOM using a standard parser feature, or via SAX using the XERCES_DISABLE_DTD environment variable. This issue has been disclosed before as CVE-2018-1311, but unfortunately that advisory incorrectly stated the issue would be fixed in version 3.2.3 or 3.2.4. | |||||
CVE-2024-54676 | 1 Apache | 1 Openmeetings | 2025-01-15 | N/A | 9.8 CRITICAL |
Vendor: The Apache Software Foundation Versions Affected: Apache OpenMeetings from 2.1.0 before 8.0.0 Description: Default clustering instructions at https://openmeetings.apache.org/Clustering.html doesn't specify white/black lists for OpenJPA this leads to possible deserialisation of untrusted data. Users are recommended to upgrade to version 8.0.0 and update their startup scripts to include the relevant 'openjpa.serialization.class.blacklist' and 'openjpa.serialization.class.whitelist' configurations as shown in the documentation. | |||||
CVE-2019-9514 | 13 Apache, Apple, Canonical and 10 more | 30 Traffic Server, Mac Os X, Swiftnio and 27 more | 2025-01-14 | 7.8 HIGH | 7.5 HIGH |
Some HTTP/2 implementations are vulnerable to a reset flood, potentially leading to a denial of service. The attacker opens a number of streams and sends an invalid request over each stream that should solicit a stream of RST_STREAM frames from the peer. Depending on how the peer queues the RST_STREAM frames, this can consume excess memory, CPU, or both. | |||||
CVE-2019-9513 | 12 Apache, Apple, Canonical and 9 more | 22 Traffic Server, Mac Os X, Swiftnio and 19 more | 2025-01-14 | 7.8 HIGH | 7.5 HIGH |
Some HTTP/2 implementations are vulnerable to resource loops, potentially leading to a denial of service. The attacker creates multiple request streams and continually shuffles the priority of the streams in a way that causes substantial churn to the priority tree. This can consume excess CPU. | |||||
CVE-2019-9518 | 11 Apache, Apple, Canonical and 8 more | 20 Traffic Server, Mac Os X, Swiftnio and 17 more | 2025-01-14 | 7.8 HIGH | 7.5 HIGH |
Some HTTP/2 implementations are vulnerable to a flood of empty frames, potentially leading to a denial of service. The attacker sends a stream of frames with an empty payload and without the end-of-stream flag. These frames can be DATA, HEADERS, CONTINUATION and/or PUSH_PROMISE. The peer spends time processing each frame disproportionate to attack bandwidth. This can consume excess CPU. | |||||
CVE-2019-9511 | 12 Apache, Apple, Canonical and 9 more | 22 Traffic Server, Mac Os X, Swiftnio and 19 more | 2025-01-14 | 7.8 HIGH | 7.5 HIGH |
Some HTTP/2 implementations are vulnerable to window size manipulation and stream prioritization manipulation, potentially leading to a denial of service. The attacker requests a large amount of data from a specified resource over multiple streams. They manipulate window size and stream priority to force the server to queue the data in 1-byte chunks. Depending on how efficiently this data is queued, this can consume excess CPU, memory, or both. | |||||
CVE-2019-9515 | 12 Apache, Apple, Canonical and 9 more | 24 Traffic Server, Mac Os X, Swiftnio and 21 more | 2025-01-14 | 7.8 HIGH | 7.5 HIGH |
Some HTTP/2 implementations are vulnerable to a settings flood, potentially leading to a denial of service. The attacker sends a stream of SETTINGS frames to the peer. Since the RFC requires that the peer reply with one acknowledgement per SETTINGS frame, an empty SETTINGS frame is almost equivalent in behavior to a ping. Depending on how efficiently this data is queued, this can consume excess CPU, memory, or both. | |||||
CVE-2019-9517 | 12 Apache, Apple, Canonical and 9 more | 25 Http Server, Traffic Server, Mac Os X and 22 more | 2025-01-14 | 7.8 HIGH | 7.5 HIGH |
Some HTTP/2 implementations are vulnerable to unconstrained interal data buffering, potentially leading to a denial of service. The attacker opens the HTTP/2 window so the peer can send without constraint; however, they leave the TCP window closed so the peer cannot actually write (many of) the bytes on the wire. The attacker then sends a stream of requests for a large response object. Depending on how the servers queue the responses, this can consume excess memory, CPU, or both. |