Vulnerabilities (CVE)

Total 299023 CVE
CVE Vendors Products Updated CVSS v2 CVSS v3
CVE-2025-38044 2025-06-18 N/A N/A
In the Linux kernel, the following vulnerability has been resolved: media: cx231xx: set device_caps for 417 The video_device for the MPEG encoder did not set device_caps. Add this, otherwise the video device can't be registered (you get a WARN_ON instead). Not seen before since currently 417 support is disabled, but I found this while experimenting with it.
CVE-2025-51381 2025-06-18 N/A 9.8 CRITICAL
An authentication bypass vulnerability exists in KCM3100 Ver1.4.2 and earlier. If this vulnerability is exploited, an attacker may bypass the authentication of the product from within the LAN to which the product is connected.
CVE-2022-49979 2025-06-18 N/A N/A
In the Linux kernel, the following vulnerability has been resolved: net: fix refcount bug in sk_psock_get (2) Syzkaller reports refcount bug as follows: ------------[ cut here ]------------ refcount_t: saturated; leaking memory. WARNING: CPU: 1 PID: 3605 at lib/refcount.c:19 refcount_warn_saturate+0xf4/0x1e0 lib/refcount.c:19 Modules linked in: CPU: 1 PID: 3605 Comm: syz-executor208 Not tainted 5.18.0-syzkaller-03023-g7e062cda7d90 #0 <TASK> __refcount_add_not_zero include/linux/refcount.h:163 [inline] __refcount_inc_not_zero include/linux/refcount.h:227 [inline] refcount_inc_not_zero include/linux/refcount.h:245 [inline] sk_psock_get+0x3bc/0x410 include/linux/skmsg.h:439 tls_data_ready+0x6d/0x1b0 net/tls/tls_sw.c:2091 tcp_data_ready+0x106/0x520 net/ipv4/tcp_input.c:4983 tcp_data_queue+0x25f2/0x4c90 net/ipv4/tcp_input.c:5057 tcp_rcv_state_process+0x1774/0x4e80 net/ipv4/tcp_input.c:6659 tcp_v4_do_rcv+0x339/0x980 net/ipv4/tcp_ipv4.c:1682 sk_backlog_rcv include/net/sock.h:1061 [inline] __release_sock+0x134/0x3b0 net/core/sock.c:2849 release_sock+0x54/0x1b0 net/core/sock.c:3404 inet_shutdown+0x1e0/0x430 net/ipv4/af_inet.c:909 __sys_shutdown_sock net/socket.c:2331 [inline] __sys_shutdown_sock net/socket.c:2325 [inline] __sys_shutdown+0xf1/0x1b0 net/socket.c:2343 __do_sys_shutdown net/socket.c:2351 [inline] __se_sys_shutdown net/socket.c:2349 [inline] __x64_sys_shutdown+0x50/0x70 net/socket.c:2349 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x46/0xb0 </TASK> During SMC fallback process in connect syscall, kernel will replaces TCP with SMC. In order to forward wakeup smc socket waitqueue after fallback, kernel will sets clcsk->sk_user_data to origin smc socket in smc_fback_replace_callbacks(). Later, in shutdown syscall, kernel will calls sk_psock_get(), which treats the clcsk->sk_user_data as psock type, triggering the refcnt warning. So, the root cause is that smc and psock, both will use sk_user_data field. So they will mismatch this field easily. This patch solves it by using another bit(defined as SK_USER_DATA_PSOCK) in PTRMASK, to mark whether sk_user_data points to a psock object or not. This patch depends on a PTRMASK introduced in commit f1ff5ce2cd5e ("net, sk_msg: Clear sk_user_data pointer on clone if tagged"). For there will possibly be more flags in the sk_user_data field, this patch also refactor sk_user_data flags code to be more generic to improve its maintainability.
CVE-2022-49944 2025-06-18 N/A N/A
In the Linux kernel, the following vulnerability has been resolved: Revert "usb: typec: ucsi: add a common function ucsi_unregister_connectors()" The recent commit 87d0e2f41b8c ("usb: typec: ucsi: add a common function ucsi_unregister_connectors()") introduced a regression that caused NULL dereference at reading the power supply sysfs. It's a stale sysfs entry that should have been removed but remains with NULL ops. The commit changed the error handling to skip the entries after a NULL con->wq, and this leaves the power device unreleased. For addressing the regression, the straight revert is applied here. Further code improvements can be done from the scratch again.
CVE-2022-49946 2025-06-18 N/A N/A
In the Linux kernel, the following vulnerability has been resolved: clk: bcm: rpi: Prevent out-of-bounds access The while loop in raspberrypi_discover_clocks() relies on the assumption that the id of the last clock element is zero. Because this data comes from the Videocore firmware and it doesn't guarantuee such a behavior this could lead to out-of-bounds access. So fix this by providing a sentinel element.
CVE-2022-50009 2025-06-18 N/A N/A
In the Linux kernel, the following vulnerability has been resolved: f2fs: fix null-ptr-deref in f2fs_get_dnode_of_data There is issue as follows when test f2fs atomic write: F2FS-fs (loop0): Can't find valid F2FS filesystem in 2th superblock F2FS-fs (loop0): invalid crc_offset: 0 F2FS-fs (loop0): f2fs_check_nid_range: out-of-range nid=1, run fsck to fix. F2FS-fs (loop0): f2fs_check_nid_range: out-of-range nid=2, run fsck to fix. ================================================================== BUG: KASAN: null-ptr-deref in f2fs_get_dnode_of_data+0xac/0x16d0 Read of size 8 at addr 0000000000000028 by task rep/1990 CPU: 4 PID: 1990 Comm: rep Not tainted 5.19.0-rc6-next-20220715 #266 Call Trace: <TASK> dump_stack_lvl+0x6e/0x91 print_report.cold+0x49a/0x6bb kasan_report+0xa8/0x130 f2fs_get_dnode_of_data+0xac/0x16d0 f2fs_do_write_data_page+0x2a5/0x1030 move_data_page+0x3c5/0xdf0 do_garbage_collect+0x2015/0x36c0 f2fs_gc+0x554/0x1d30 f2fs_balance_fs+0x7f5/0xda0 f2fs_write_single_data_page+0xb66/0xdc0 f2fs_write_cache_pages+0x716/0x1420 f2fs_write_data_pages+0x84f/0x9a0 do_writepages+0x130/0x3a0 filemap_fdatawrite_wbc+0x87/0xa0 file_write_and_wait_range+0x157/0x1c0 f2fs_do_sync_file+0x206/0x12d0 f2fs_sync_file+0x99/0xc0 vfs_fsync_range+0x75/0x140 f2fs_file_write_iter+0xd7b/0x1850 vfs_write+0x645/0x780 ksys_write+0xf1/0x1e0 do_syscall_64+0x3b/0x90 entry_SYSCALL_64_after_hwframe+0x63/0xcd As 3db1de0e582c commit changed atomic write way which new a cow_inode for atomic write file, and also mark cow_inode as FI_ATOMIC_FILE. When f2fs_do_write_data_page write cow_inode will use cow_inode's cow_inode which is NULL. Then will trigger null-ptr-deref. To solve above issue, introduce FI_COW_FILE flag for COW inode. Fiexes: 3db1de0e582c("f2fs: change the current atomic write way")
CVE-2025-38059 2025-06-18 N/A N/A
In the Linux kernel, the following vulnerability has been resolved: btrfs: avoid NULL pointer dereference if no valid csum tree [BUG] When trying read-only scrub on a btrfs with rescue=idatacsums mount option, it will crash with the following call trace: BUG: kernel NULL pointer dereference, address: 0000000000000208 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page CPU: 1 UID: 0 PID: 835 Comm: btrfs Tainted: G O 6.15.0-rc3-custom+ #236 PREEMPT(full) Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS unknown 02/02/2022 RIP: 0010:btrfs_lookup_csums_bitmap+0x49/0x480 [btrfs] Call Trace: <TASK> scrub_find_fill_first_stripe+0x35b/0x3d0 [btrfs] scrub_simple_mirror+0x175/0x290 [btrfs] scrub_stripe+0x5f7/0x6f0 [btrfs] scrub_chunk+0x9a/0x150 [btrfs] scrub_enumerate_chunks+0x333/0x660 [btrfs] btrfs_scrub_dev+0x23e/0x600 [btrfs] btrfs_ioctl+0x1dcf/0x2f80 [btrfs] __x64_sys_ioctl+0x97/0xc0 do_syscall_64+0x4f/0x120 entry_SYSCALL_64_after_hwframe+0x76/0x7e [CAUSE] Mount option "rescue=idatacsums" will completely skip loading the csum tree, so that any data read will not find any data csum thus we will ignore data checksum verification. Normally call sites utilizing csum tree will check the fs state flag NO_DATA_CSUMS bit, but unfortunately scrub does not check that bit at all. This results in scrub to call btrfs_search_slot() on a NULL pointer and triggered above crash. [FIX] Check both extent and csum tree root before doing any tree search.
CVE-2025-38012 2025-06-18 N/A N/A
In the Linux kernel, the following vulnerability has been resolved: sched_ext: bpf_iter_scx_dsq_new() should always initialize iterator BPF programs may call next() and destroy() on BPF iterators even after new() returns an error value (e.g. bpf_for_each() macro ignores error returns from new()). bpf_iter_scx_dsq_new() could leave the iterator in an uninitialized state after an error return causing bpf_iter_scx_dsq_next() to dereference garbage data. Make bpf_iter_scx_dsq_new() always clear $kit->dsq so that next() and destroy() become noops.
CVE-2025-38022 2025-06-18 N/A N/A
In the Linux kernel, the following vulnerability has been resolved: RDMA/core: Fix "KASAN: slab-use-after-free Read in ib_register_device" problem Call Trace: __dump_stack lib/dump_stack.c:94 [inline] dump_stack_lvl+0x116/0x1f0 lib/dump_stack.c:120 print_address_description mm/kasan/report.c:408 [inline] print_report+0xc3/0x670 mm/kasan/report.c:521 kasan_report+0xe0/0x110 mm/kasan/report.c:634 strlen+0x93/0xa0 lib/string.c:420 __fortify_strlen include/linux/fortify-string.h:268 [inline] get_kobj_path_length lib/kobject.c:118 [inline] kobject_get_path+0x3f/0x2a0 lib/kobject.c:158 kobject_uevent_env+0x289/0x1870 lib/kobject_uevent.c:545 ib_register_device drivers/infiniband/core/device.c:1472 [inline] ib_register_device+0x8cf/0xe00 drivers/infiniband/core/device.c:1393 rxe_register_device+0x275/0x320 drivers/infiniband/sw/rxe/rxe_verbs.c:1552 rxe_net_add+0x8e/0xe0 drivers/infiniband/sw/rxe/rxe_net.c:550 rxe_newlink+0x70/0x190 drivers/infiniband/sw/rxe/rxe.c:225 nldev_newlink+0x3a3/0x680 drivers/infiniband/core/nldev.c:1796 rdma_nl_rcv_msg+0x387/0x6e0 drivers/infiniband/core/netlink.c:195 rdma_nl_rcv_skb.constprop.0.isra.0+0x2e5/0x450 netlink_unicast_kernel net/netlink/af_netlink.c:1313 [inline] netlink_unicast+0x53a/0x7f0 net/netlink/af_netlink.c:1339 netlink_sendmsg+0x8d1/0xdd0 net/netlink/af_netlink.c:1883 sock_sendmsg_nosec net/socket.c:712 [inline] __sock_sendmsg net/socket.c:727 [inline] ____sys_sendmsg+0xa95/0xc70 net/socket.c:2566 ___sys_sendmsg+0x134/0x1d0 net/socket.c:2620 __sys_sendmsg+0x16d/0x220 net/socket.c:2652 do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline] do_syscall_64+0xcd/0x260 arch/x86/entry/syscall_64.c:94 entry_SYSCALL_64_after_hwframe+0x77/0x7f This problem is similar to the problem that the commit 1d6a9e7449e2 ("RDMA/core: Fix use-after-free when rename device name") fixes. The root cause is: the function ib_device_rename() renames the name with lock. But in the function kobject_uevent(), this name is accessed without lock protection at the same time. The solution is to add the lock protection when this name is accessed in the function kobject_uevent().
CVE-2025-38070 2025-06-18 N/A N/A
In the Linux kernel, the following vulnerability has been resolved: ASoC: sma1307: Add NULL check in sma1307_setting_loaded() All varibale allocated by kzalloc and devm_kzalloc could be NULL. Multiple pointer checks and their cleanup are added. This issue is found by our static analysis tool
CVE-2025-38028 2025-06-18 N/A N/A
In the Linux kernel, the following vulnerability has been resolved: NFS/localio: Fix a race in nfs_local_open_fh() Once the clp->cl_uuid.lock has been dropped, another CPU could come in and free the struct nfsd_file that was just added. To prevent that from happening, take the RCU read lock before dropping the spin lock.
CVE-2022-50012 2025-06-18 N/A N/A
In the Linux kernel, the following vulnerability has been resolved: powerpc/64: Init jump labels before parse_early_param() On 64-bit, calling jump_label_init() in setup_feature_keys() is too late because static keys may be used in subroutines of parse_early_param() which is again subroutine of early_init_devtree(). For example booting with "threadirqs": static_key_enable_cpuslocked(): static key '0xc000000002953260' used before call to jump_label_init() WARNING: CPU: 0 PID: 0 at kernel/jump_label.c:166 static_key_enable_cpuslocked+0xfc/0x120 ... NIP static_key_enable_cpuslocked+0xfc/0x120 LR static_key_enable_cpuslocked+0xf8/0x120 Call Trace: static_key_enable_cpuslocked+0xf8/0x120 (unreliable) static_key_enable+0x30/0x50 setup_forced_irqthreads+0x28/0x40 do_early_param+0xa0/0x108 parse_args+0x290/0x4e0 parse_early_options+0x48/0x5c parse_early_param+0x58/0x84 early_init_devtree+0xd4/0x518 early_setup+0xb4/0x214 So call jump_label_init() just before parse_early_param() in early_init_devtree(). [mpe: Add call trace to change log and minor wording edits.]
CVE-2025-38017 2025-06-18 N/A N/A
In the Linux kernel, the following vulnerability has been resolved: fs/eventpoll: fix endless busy loop after timeout has expired After commit 0a65bc27bd64 ("eventpoll: Set epoll timeout if it's in the future"), the following program would immediately enter a busy loop in the kernel: ``` int main() { int e = epoll_create1(0); struct epoll_event event = {.events = EPOLLIN}; epoll_ctl(e, EPOLL_CTL_ADD, 0, &event); const struct timespec timeout = {.tv_nsec = 1}; epoll_pwait2(e, &event, 1, &timeout, 0); } ``` This happens because the given (non-zero) timeout of 1 nanosecond usually expires before ep_poll() is entered and then ep_schedule_timeout() returns false, but `timed_out` is never set because the code line that sets it is skipped. This quickly turns into a soft lockup, RCU stalls and deadlocks, inflicting severe headaches to the whole system. When the timeout has expired, we don't need to schedule a hrtimer, but we should set the `timed_out` variable. Therefore, I suggest moving the ep_schedule_timeout() check into the `timed_out` expression instead of skipping it. brauner: Note that there was an earlier fix by Joe Damato in response to my bug report in [1].
CVE-2025-49385 2025-06-18 N/A 7.8 HIGH
Trend Micro Security 17.8 (Consumer) is vulnerable to a link following local privilege escalation vulnerability that could allow a local attacker to unintentionally delete privileged Trend Micro files including its own.
CVE-2022-49989 2025-06-18 N/A N/A
In the Linux kernel, the following vulnerability has been resolved: xen/privcmd: fix error exit of privcmd_ioctl_dm_op() The error exit of privcmd_ioctl_dm_op() is calling unlock_pages() potentially with pages being NULL, leading to a NULL dereference. Additionally lock_pages() doesn't check for pin_user_pages_fast() having been completely successful, resulting in potentially not locking all pages into memory. This could result in sporadic failures when using the related memory in user mode. Fix all of that by calling unlock_pages() always with the real number of pinned pages, which will be zero in case pages being NULL, and by checking the number of pages pinned by pin_user_pages_fast() matching the expected number of pages.
CVE-2025-29720 1 Langgenius 1 Dify 2025-06-18 N/A 4.8 MEDIUM
Dify v1.0 was discovered to contain a Server-Side Request Forgery (SSRF) via the component controllers.console.remote_files.RemoteFileUploadApi.
CVE-2025-2830 1 Mozilla 1 Thunderbird 2025-06-18 N/A 6.3 MEDIUM
By crafting a malformed file name for an attachment in a multipart message, an attacker can trick Thunderbird into including a directory listing of /tmp when the message is forwarded or edited as a new message. This vulnerability could allow attackers to disclose sensitive information from the victim's system. This vulnerability is not limited to Linux; similar behavior has been observed on Windows as well. This vulnerability affects Thunderbird < 137.0.2 and Thunderbird < 128.9.2.
CVE-2025-3522 1 Mozilla 1 Thunderbird 2025-06-18 N/A 6.3 MEDIUM
Thunderbird processes the X-Mozilla-External-Attachment-URL header to handle attachments which can be hosted externally. When an email is opened, Thunderbird accesses the specified URL to determine file size, and navigates to it when the user clicks the attachment. Because the URL is not validated or sanitized, it can reference internal resources like chrome:// or SMB share file:// links, potentially leading to hashed Windows credential leakage and opening the door to more serious security issues. This vulnerability affects Thunderbird < 137.0.2 and Thunderbird < 128.9.2.
CVE-2025-3739 1 Drupal 8 Google Optimize Hide Page Project 1 Drupal 8 Google Optimize Hide Page 2025-06-18 N/A 5.9 MEDIUM
Vulnerability in Drupal Drupal 8 Google Optimize Hide Page.This issue affects Drupal 8 Google Optimize Hide Page: *.*.
CVE-2025-32789 1 Espocrm 1 Espocrm 2025-06-18 N/A 3.1 LOW
EspoCRM is an Open Source Customer Relationship Management software. Prior to version 9.0.7, users can be sorted by their password hash. This flaw allows an attacker to make assumptions about the hash values of other users stored in the password column of the user table, based on the results of the sorted list of users. Although unlikely, if an attacker knows the hash value of their password, they can change the password and repeat the sorting until the other user's password hash is fully revealed. This issue is patched in version 9.0.7.