Total
15001 CVE
| CVE | Vendors | Products | Updated | CVSS v2 | CVSS v3 |
|---|---|---|---|---|---|
| CVE-2023-53609 | 1 Linux | 1 Linux Kernel | 2026-02-05 | N/A | 5.5 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: scsi: Revert "scsi: core: Do not increase scsi_device's iorequest_cnt if dispatch failed" The "atomic_inc(&cmd->device->iorequest_cnt)" in scsi_queue_rq() would cause kernel panic because cmd->device may be freed after returning from scsi_dispatch_cmd(). This reverts commit cfee29ffb45b1c9798011b19d454637d1b0fe87d. | |||||
| CVE-2023-53610 | 1 Linux | 1 Linux Kernel | 2026-02-05 | N/A | 5.5 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: irqchip: Fix refcount leak in platform_irqchip_probe of_irq_find_parent() returns a node pointer with refcount incremented, We should use of_node_put() on it when not needed anymore. Add missing of_node_put() to avoid refcount leak. | |||||
| CVE-2023-53611 | 1 Linux | 1 Linux Kernel | 2026-02-05 | N/A | 5.5 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: ipmi_si: fix a memleak in try_smi_init() Kmemleak reported the following leak info in try_smi_init(): unreferenced object 0xffff00018ecf9400 (size 1024): comm "modprobe", pid 2707763, jiffies 4300851415 (age 773.308s) backtrace: [<000000004ca5b312>] __kmalloc+0x4b8/0x7b0 [<00000000953b1072>] try_smi_init+0x148/0x5dc [ipmi_si] [<000000006460d325>] 0xffff800081b10148 [<0000000039206ea5>] do_one_initcall+0x64/0x2a4 [<00000000601399ce>] do_init_module+0x50/0x300 [<000000003c12ba3c>] load_module+0x7a8/0x9e0 [<00000000c246fffe>] __se_sys_init_module+0x104/0x180 [<00000000eea99093>] __arm64_sys_init_module+0x24/0x30 [<0000000021b1ef87>] el0_svc_common.constprop.0+0x94/0x250 [<0000000070f4f8b7>] do_el0_svc+0x48/0xe0 [<000000005a05337f>] el0_svc+0x24/0x3c [<000000005eb248d6>] el0_sync_handler+0x160/0x164 [<0000000030a59039>] el0_sync+0x160/0x180 The problem was that when an error occurred before handlers registration and after allocating `new_smi->si_sm`, the variable wouldn't be freed in the error handling afterwards since `shutdown_smi()` hadn't been registered yet. Fix it by adding a `kfree()` in the error handling path in `try_smi_init()`. | |||||
| CVE-2023-53612 | 1 Linux | 1 Linux Kernel | 2026-02-05 | N/A | 5.5 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: hwmon: (coretemp) Simplify platform device handling Coretemp's platform driver is unconventional. All the real work is done globally by the initcall and CPU hotplug notifiers, while the "driver" effectively just wraps an allocation and the registration of the hwmon interface in a long-winded round-trip through the driver core. The whole logic of dynamically creating and destroying platform devices to bring the interfaces up and down is error prone, since it assumes platform_device_add() will synchronously bind the driver and set drvdata before it returns, thus results in a NULL dereference if drivers_autoprobe is turned off for the platform bus. Furthermore, the unusual approach of doing that from within a CPU hotplug notifier, already commented in the code that it deadlocks suspend, also causes lockdep issues for other drivers or subsystems which may want to legitimately register a CPU hotplug notifier from a platform bus notifier. All of these issues can be solved by ripping this unusual behaviour out completely, simply tying the platform devices to the lifetime of the module itself, and directly managing the hwmon interfaces from the hotplug notifiers. There is a slight user-visible change in that /sys/bus/platform/drivers/coretemp will no longer appear, and /sys/devices/platform/coretemp.n will remain present if package n is hotplugged off, but hwmon users should really only be looking for the presence of the hwmon interfaces, whose behaviour remains unchanged. | |||||
| CVE-2023-53613 | 1 Linux | 1 Linux Kernel | 2026-02-05 | N/A | 7.8 HIGH |
| In the Linux kernel, the following vulnerability has been resolved: dax: Fix dax_mapping_release() use after free A CONFIG_DEBUG_KOBJECT_RELEASE test of removing a device-dax region provider (like modprobe -r dax_hmem) yields: kobject: 'mapping0' (ffff93eb460e8800): kobject_release, parent 0000000000000000 (delayed 2000) [..] DEBUG_LOCKS_WARN_ON(1) WARNING: CPU: 23 PID: 282 at kernel/locking/lockdep.c:232 __lock_acquire+0x9fc/0x2260 [..] RIP: 0010:__lock_acquire+0x9fc/0x2260 [..] Call Trace: <TASK> [..] lock_acquire+0xd4/0x2c0 ? ida_free+0x62/0x130 _raw_spin_lock_irqsave+0x47/0x70 ? ida_free+0x62/0x130 ida_free+0x62/0x130 dax_mapping_release+0x1f/0x30 device_release+0x36/0x90 kobject_delayed_cleanup+0x46/0x150 Due to attempting ida_free() on an ida object that has already been freed. Devices typically only hold a reference on their parent while registered. If a child needs a parent object to complete its release it needs to hold a reference that it drops from its release callback. Arrange for a dax_mapping to pin its parent dev_dax instance until dax_mapping_release(). | |||||
| CVE-2023-53614 | 1 Linux | 1 Linux Kernel | 2026-02-05 | N/A | 4.7 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: mm/ksm: fix race with VMA iteration and mm_struct teardown exit_mmap() will tear down the VMAs and maple tree with the mmap_lock held in write mode. Ensure that the maple tree is still valid by checking ksm_test_exit() after taking the mmap_lock in read mode, but before the for_each_vma() iterator dereferences a destroyed maple tree. Since the maple tree is destroyed, the flags telling lockdep to check an external lock has been cleared. Skip the for_each_vma() iterator to avoid dereferencing a maple tree without the external lock flag, which would create a lockdep warning. | |||||
| CVE-2023-53615 | 1 Linux | 1 Linux Kernel | 2026-02-05 | N/A | 4.7 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: scsi: qla2xxx: Fix deletion race condition System crash when using debug kernel due to link list corruption. The cause of the link list corruption is due to session deletion was allowed to queue up twice. Here's the internal trace that show the same port was allowed to double queue for deletion on different cpu. 20808683956 015 qla2xxx [0000:13:00.1]-e801:4: Scheduling sess ffff93ebf9306800 for deletion 50:06:0e:80:12:48:ff:50 fc4_type 1 20808683957 027 qla2xxx [0000:13:00.1]-e801:4: Scheduling sess ffff93ebf9306800 for deletion 50:06:0e:80:12:48:ff:50 fc4_type 1 Move the clearing/setting of deleted flag lock. | |||||
| CVE-2023-53616 | 1 Linux | 1 Linux Kernel | 2026-02-05 | N/A | 7.8 HIGH |
| In the Linux kernel, the following vulnerability has been resolved: jfs: fix invalid free of JFS_IP(ipimap)->i_imap in diUnmount syzbot found an invalid-free in diUnmount: BUG: KASAN: double-free in slab_free mm/slub.c:3661 [inline] BUG: KASAN: double-free in __kmem_cache_free+0x71/0x110 mm/slub.c:3674 Free of addr ffff88806f410000 by task syz-executor131/3632 CPU: 0 PID: 3632 Comm: syz-executor131 Not tainted 6.1.0-rc7-syzkaller-00012-gca57f02295f1 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/26/2022 Call Trace: <TASK> __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0x1b1/0x28e lib/dump_stack.c:106 print_address_description+0x74/0x340 mm/kasan/report.c:284 print_report+0x107/0x1f0 mm/kasan/report.c:395 kasan_report_invalid_free+0xac/0xd0 mm/kasan/report.c:460 ____kasan_slab_free+0xfb/0x120 kasan_slab_free include/linux/kasan.h:177 [inline] slab_free_hook mm/slub.c:1724 [inline] slab_free_freelist_hook+0x12e/0x1a0 mm/slub.c:1750 slab_free mm/slub.c:3661 [inline] __kmem_cache_free+0x71/0x110 mm/slub.c:3674 diUnmount+0xef/0x100 fs/jfs/jfs_imap.c:195 jfs_umount+0x108/0x370 fs/jfs/jfs_umount.c:63 jfs_put_super+0x86/0x190 fs/jfs/super.c:194 generic_shutdown_super+0x130/0x310 fs/super.c:492 kill_block_super+0x79/0xd0 fs/super.c:1428 deactivate_locked_super+0xa7/0xf0 fs/super.c:332 cleanup_mnt+0x494/0x520 fs/namespace.c:1186 task_work_run+0x243/0x300 kernel/task_work.c:179 exit_task_work include/linux/task_work.h:38 [inline] do_exit+0x664/0x2070 kernel/exit.c:820 do_group_exit+0x1fd/0x2b0 kernel/exit.c:950 __do_sys_exit_group kernel/exit.c:961 [inline] __se_sys_exit_group kernel/exit.c:959 [inline] __x64_sys_exit_group+0x3b/0x40 kernel/exit.c:959 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x3d/0xb0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x63/0xcd [...] JFS_IP(ipimap)->i_imap is not setting to NULL after free in diUnmount. If jfs_remount() free JFS_IP(ipimap)->i_imap but then failed at diMount(). JFS_IP(ipimap)->i_imap will be freed once again. Fix this problem by setting JFS_IP(ipimap)->i_imap to NULL after free. | |||||
| CVE-2022-50505 | 1 Linux | 1 Linux Kernel | 2026-02-05 | N/A | 5.5 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: iommu/amd: Fix pci device refcount leak in ppr_notifier() As comment of pci_get_domain_bus_and_slot() says, it returns a pci device with refcount increment, when finish using it, the caller must decrement the reference count by calling pci_dev_put(). So call it before returning from ppr_notifier() to avoid refcount leak. | |||||
| CVE-2022-50506 | 1 Linux | 1 Linux Kernel | 2026-02-05 | N/A | 5.5 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: drbd: only clone bio if we have a backing device Commit c347a787e34cb (drbd: set ->bi_bdev in drbd_req_new) moved a bio_set_dev call (which has since been removed) to "earlier", from drbd_request_prepare to drbd_req_new. The problem is that this accesses device->ldev->backing_bdev, which is not NULL-checked at this point. When we don't have an ldev (i.e. when the DRBD device is diskless), this leads to a null pointer deref. So, only allocate the private_bio if we actually have a disk. This is also a small optimization, since we don't clone the bio to only to immediately free it again in the diskless case. | |||||
| CVE-2022-50507 | 1 Linux | 1 Linux Kernel | 2026-02-05 | N/A | 7.8 HIGH |
| In the Linux kernel, the following vulnerability has been resolved: fs/ntfs3: Validate data run offset This adds sanity checks for data run offset. We should make sure data run offset is legit before trying to unpack them, otherwise we may encounter use-after-free or some unexpected memory access behaviors. [ 82.940342] BUG: KASAN: use-after-free in run_unpack+0x2e3/0x570 [ 82.941180] Read of size 1 at addr ffff888008a8487f by task mount/240 [ 82.941670] [ 82.942069] CPU: 0 PID: 240 Comm: mount Not tainted 5.19.0+ #15 [ 82.942482] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014 [ 82.943720] Call Trace: [ 82.944204] <TASK> [ 82.944471] dump_stack_lvl+0x49/0x63 [ 82.944908] print_report.cold+0xf5/0x67b [ 82.945141] ? __wait_on_bit+0x106/0x120 [ 82.945750] ? run_unpack+0x2e3/0x570 [ 82.946626] kasan_report+0xa7/0x120 [ 82.947046] ? run_unpack+0x2e3/0x570 [ 82.947280] __asan_load1+0x51/0x60 [ 82.947483] run_unpack+0x2e3/0x570 [ 82.947709] ? memcpy+0x4e/0x70 [ 82.947927] ? run_pack+0x7a0/0x7a0 [ 82.948158] run_unpack_ex+0xad/0x3f0 [ 82.948399] ? mi_enum_attr+0x14a/0x200 [ 82.948717] ? run_unpack+0x570/0x570 [ 82.949072] ? ni_enum_attr_ex+0x1b2/0x1c0 [ 82.949332] ? ni_fname_type.part.0+0xd0/0xd0 [ 82.949611] ? mi_read+0x262/0x2c0 [ 82.949970] ? ntfs_cmp_names_cpu+0x125/0x180 [ 82.950249] ntfs_iget5+0x632/0x1870 [ 82.950621] ? ntfs_get_block_bmap+0x70/0x70 [ 82.951192] ? evict+0x223/0x280 [ 82.951525] ? iput.part.0+0x286/0x320 [ 82.951969] ntfs_fill_super+0x1321/0x1e20 [ 82.952436] ? put_ntfs+0x1d0/0x1d0 [ 82.952822] ? vsprintf+0x20/0x20 [ 82.953188] ? mutex_unlock+0x81/0xd0 [ 82.953379] ? set_blocksize+0x95/0x150 [ 82.954001] get_tree_bdev+0x232/0x370 [ 82.954438] ? put_ntfs+0x1d0/0x1d0 [ 82.954700] ntfs_fs_get_tree+0x15/0x20 [ 82.955049] vfs_get_tree+0x4c/0x130 [ 82.955292] path_mount+0x645/0xfd0 [ 82.955615] ? putname+0x80/0xa0 [ 82.955955] ? finish_automount+0x2e0/0x2e0 [ 82.956310] ? kmem_cache_free+0x110/0x390 [ 82.956723] ? putname+0x80/0xa0 [ 82.957023] do_mount+0xd6/0xf0 [ 82.957411] ? path_mount+0xfd0/0xfd0 [ 82.957638] ? __kasan_check_write+0x14/0x20 [ 82.957948] __x64_sys_mount+0xca/0x110 [ 82.958310] do_syscall_64+0x3b/0x90 [ 82.958719] entry_SYSCALL_64_after_hwframe+0x63/0xcd [ 82.959341] RIP: 0033:0x7fd0d1ce948a [ 82.960193] Code: 48 8b 0d 11 fa 2a 00 f7 d8 64 89 01 48 83 c8 ff c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 49 89 ca b8 a5 00 00 008 [ 82.961532] RSP: 002b:00007ffe59ff69a8 EFLAGS: 00000202 ORIG_RAX: 00000000000000a5 [ 82.962527] RAX: ffffffffffffffda RBX: 0000564dcc107060 RCX: 00007fd0d1ce948a [ 82.963266] RDX: 0000564dcc107260 RSI: 0000564dcc1072e0 RDI: 0000564dcc10fce0 [ 82.963686] RBP: 0000000000000000 R08: 0000564dcc107280 R09: 0000000000000020 [ 82.964272] R10: 00000000c0ed0000 R11: 0000000000000202 R12: 0000564dcc10fce0 [ 82.964785] R13: 0000564dcc107260 R14: 0000000000000000 R15: 00000000ffffffff | |||||
| CVE-2022-50508 | 1 Linux | 1 Linux Kernel | 2026-02-05 | N/A | 7.1 HIGH |
| In the Linux kernel, the following vulnerability has been resolved: wifi: mt76: mt76x0: fix oob access in mt76x0_phy_get_target_power After 'commit ba45841ca5eb ("wifi: mt76: mt76x02: simplify struct mt76x02_rate_power")', mt76x02 relies on ht[0-7] rate_power data for vht mcs{0,7}, while it uses vth[0-1] rate_power for vht mcs {8,9}. Fix a possible out-of-bound access in mt76x0_phy_get_target_power routine. | |||||
| CVE-2022-50509 | 1 Linux | 1 Linux Kernel | 2026-02-05 | N/A | 5.5 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: media: coda: Add check for kmalloc As the kmalloc may return NULL pointer, it should be better to check the return value in order to avoid NULL poineter dereference, same as the others. | |||||
| CVE-2022-50510 | 1 Linux | 1 Linux Kernel | 2026-02-05 | N/A | 5.5 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: perf/smmuv3: Fix hotplug callback leak in arm_smmu_pmu_init() arm_smmu_pmu_init() won't remove the callback added by cpuhp_setup_state_multi() when platform_driver_register() failed. Remove the callback by cpuhp_remove_multi_state() in fail path. Similar to the handling of arm_ccn_init() in commit 26242b330093 ("bus: arm-ccn: Prevent hotplug callback leak") | |||||
| CVE-2022-50511 | 1 Linux | 1 Linux Kernel | 2026-02-05 | N/A | 5.5 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: lib/fonts: fix undefined behavior in bit shift for get_default_font Shifting signed 32-bit value by 31 bits is undefined, so changing significant bit to unsigned. The UBSAN warning calltrace like below: UBSAN: shift-out-of-bounds in lib/fonts/fonts.c:139:20 left shift of 1 by 31 places cannot be represented in type 'int' <TASK> dump_stack_lvl+0x7d/0xa5 dump_stack+0x15/0x1b ubsan_epilogue+0xe/0x4e __ubsan_handle_shift_out_of_bounds+0x1e7/0x20c get_default_font+0x1c7/0x1f0 fbcon_startup+0x347/0x3a0 do_take_over_console+0xce/0x270 do_fbcon_takeover+0xa1/0x170 do_fb_registered+0x2a8/0x340 fbcon_fb_registered+0x47/0xe0 register_framebuffer+0x294/0x4a0 __drm_fb_helper_initial_config_and_unlock+0x43c/0x880 [drm_kms_helper] drm_fb_helper_initial_config+0x52/0x80 [drm_kms_helper] drm_fbdev_client_hotplug+0x156/0x1b0 [drm_kms_helper] drm_fbdev_generic_setup+0xfc/0x290 [drm_kms_helper] bochs_pci_probe+0x6ca/0x772 [bochs] local_pci_probe+0x4d/0xb0 pci_device_probe+0x119/0x320 really_probe+0x181/0x550 __driver_probe_device+0xc6/0x220 driver_probe_device+0x32/0x100 __driver_attach+0x195/0x200 bus_for_each_dev+0xbb/0x120 driver_attach+0x27/0x30 bus_add_driver+0x22e/0x2f0 driver_register+0xa9/0x190 __pci_register_driver+0x90/0xa0 bochs_pci_driver_init+0x52/0x1000 [bochs] do_one_initcall+0x76/0x430 do_init_module+0x61/0x28a load_module+0x1f82/0x2e50 __do_sys_finit_module+0xf8/0x190 __x64_sys_finit_module+0x23/0x30 do_syscall_64+0x58/0x80 entry_SYSCALL_64_after_hwframe+0x63/0xcd </TASK> | |||||
| CVE-2022-50512 | 1 Linux | 1 Linux Kernel | 2026-02-05 | N/A | 5.5 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: ext4: fix potential memory leak in ext4_fc_record_regions() As krealloc may return NULL, in this case 'state->fc_regions' may not be freed by krealloc, but 'state->fc_regions' already set NULL. Then will lead to 'state->fc_regions' memory leak. | |||||
| CVE-2022-50513 | 1 Linux | 1 Linux Kernel | 2026-02-05 | N/A | 5.5 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: staging: rtl8723bs: fix a potential memory leak in rtw_init_cmd_priv() In rtw_init_cmd_priv(), if `pcmdpriv->rsp_allocated_buf` is allocated in failure, then `pcmdpriv->cmd_allocated_buf` will be not properly released. Besides, considering there are only two error paths and the first one can directly return, so we do not need implicitly jump to the `exit` tag to execute the error handler. So this patch added `kfree(pcmdpriv->cmd_allocated_buf);` on the error path to release the resource and simplified the return logic of rtw_init_cmd_priv(). As there is no proper device to test with, no runtime testing was performed. | |||||
| CVE-2022-50529 | 1 Linux | 1 Linux Kernel | 2026-02-05 | N/A | 5.5 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: test_firmware: fix memory leak in test_firmware_init() When misc_register() failed in test_firmware_init(), the memory pointed by test_fw_config->name is not released. The memory leak information is as follows: unreferenced object 0xffff88810a34cb00 (size 32): comm "insmod", pid 7952, jiffies 4294948236 (age 49.060s) hex dump (first 32 bytes): 74 65 73 74 2d 66 69 72 6d 77 61 72 65 2e 62 69 test-firmware.bi 6e 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 n............... backtrace: [<ffffffff81b21fcb>] __kmalloc_node_track_caller+0x4b/0xc0 [<ffffffff81affb96>] kstrndup+0x46/0xc0 [<ffffffffa0403a49>] __test_firmware_config_init+0x29/0x380 [test_firmware] [<ffffffffa040f068>] 0xffffffffa040f068 [<ffffffff81002c41>] do_one_initcall+0x141/0x780 [<ffffffff816a72c3>] do_init_module+0x1c3/0x630 [<ffffffff816adb9e>] load_module+0x623e/0x76a0 [<ffffffff816af471>] __do_sys_finit_module+0x181/0x240 [<ffffffff89978f99>] do_syscall_64+0x39/0xb0 [<ffffffff89a0008b>] entry_SYSCALL_64_after_hwframe+0x63/0xcd | |||||
| CVE-2022-50530 | 1 Linux | 1 Linux Kernel | 2026-02-05 | N/A | 5.5 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: blk-mq: fix null pointer dereference in blk_mq_clear_rq_mapping() Our syzkaller report a null pointer dereference, root cause is following: __blk_mq_alloc_map_and_rqs set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs blk_mq_alloc_map_and_rqs blk_mq_alloc_rqs // failed due to oom alloc_pages_node // set->tags[hctx_idx] is still NULL blk_mq_free_rqs drv_tags = set->tags[hctx_idx]; // null pointer dereference is triggered blk_mq_clear_rq_mapping(drv_tags, ...) This is because commit 63064be150e4 ("blk-mq: Add blk_mq_alloc_map_and_rqs()") merged the two steps: 1) set->tags[hctx_idx] = blk_mq_alloc_rq_map() 2) blk_mq_alloc_rqs(..., set->tags[hctx_idx]) into one step: set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs() Since tags is not initialized yet in this case, fix the problem by checking if tags is NULL pointer in blk_mq_clear_rq_mapping(). | |||||
| CVE-2022-50531 | 1 Linux | 1 Linux Kernel | 2026-02-05 | N/A | 5.5 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: tipc: fix an information leak in tipc_topsrv_kern_subscr Use a 8-byte write to initialize sub.usr_handle in tipc_topsrv_kern_subscr(), otherwise four bytes remain uninitialized when issuing setsockopt(..., SOL_TIPC, ...). This resulted in an infoleak reported by KMSAN when the packet was received: ===================================================== BUG: KMSAN: kernel-infoleak in copyout+0xbc/0x100 lib/iov_iter.c:169 instrument_copy_to_user ./include/linux/instrumented.h:121 copyout+0xbc/0x100 lib/iov_iter.c:169 _copy_to_iter+0x5c0/0x20a0 lib/iov_iter.c:527 copy_to_iter ./include/linux/uio.h:176 simple_copy_to_iter+0x64/0xa0 net/core/datagram.c:513 __skb_datagram_iter+0x123/0xdc0 net/core/datagram.c:419 skb_copy_datagram_iter+0x58/0x200 net/core/datagram.c:527 skb_copy_datagram_msg ./include/linux/skbuff.h:3903 packet_recvmsg+0x521/0x1e70 net/packet/af_packet.c:3469 ____sys_recvmsg+0x2c4/0x810 net/socket.c:? ___sys_recvmsg+0x217/0x840 net/socket.c:2743 __sys_recvmsg net/socket.c:2773 __do_sys_recvmsg net/socket.c:2783 __se_sys_recvmsg net/socket.c:2780 __x64_sys_recvmsg+0x364/0x540 net/socket.c:2780 do_syscall_x64 arch/x86/entry/common.c:50 do_syscall_64+0x3d/0xb0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x63/0xcd arch/x86/entry/entry_64.S:120 ... Uninit was stored to memory at: tipc_sub_subscribe+0x42d/0xb50 net/tipc/subscr.c:156 tipc_conn_rcv_sub+0x246/0x620 net/tipc/topsrv.c:375 tipc_topsrv_kern_subscr+0x2e8/0x400 net/tipc/topsrv.c:579 tipc_group_create+0x4e7/0x7d0 net/tipc/group.c:190 tipc_sk_join+0x2a8/0x770 net/tipc/socket.c:3084 tipc_setsockopt+0xae5/0xe40 net/tipc/socket.c:3201 __sys_setsockopt+0x87f/0xdc0 net/socket.c:2252 __do_sys_setsockopt net/socket.c:2263 __se_sys_setsockopt net/socket.c:2260 __x64_sys_setsockopt+0xe0/0x160 net/socket.c:2260 do_syscall_x64 arch/x86/entry/common.c:50 do_syscall_64+0x3d/0xb0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x63/0xcd arch/x86/entry/entry_64.S:120 Local variable sub created at: tipc_topsrv_kern_subscr+0x57/0x400 net/tipc/topsrv.c:562 tipc_group_create+0x4e7/0x7d0 net/tipc/group.c:190 Bytes 84-87 of 88 are uninitialized Memory access of size 88 starts at ffff88801ed57cd0 Data copied to user address 0000000020000400 ... ===================================================== | |||||
