Total
1160 CVE
CVE | Vendors | Products | Updated | CVSS v2 | CVSS v3 |
---|---|---|---|---|---|
CVE-2009-2054 | 1 Cisco | 1 Unified Communications Manager | 2025-04-09 | 7.8 HIGH | N/A |
Cisco Unified Communications Manager (aka CUCM, formerly CallManager) 4.x, 5.x before 5.1(3g), 6.x before 6.1(4), 7.0 before 7.0(2a)su1, and 7.1 before 7.1(2a)su1 allows remote attackers to cause a denial of service (file-descriptor exhaustion and SIP outage) via a flood of TCP packets, aka Bug ID CSCsx23689. | |||||
CVE-2008-1700 | 1 Interwoven | 1 Worksite Web | 2025-04-09 | 7.1 HIGH | N/A |
The Web TransferCtrl Class 8,2,1,4 (iManFile.cab), as used in WorkSite Web 8.2 before SP1 P2, allows remote attackers to cause a denial of service (memory consumption) via a large number of SendNrlLink directives, which opens a separate window for each directive. | |||||
CVE-2008-5180 | 1 Microsoft | 1 Office Communicator | 2025-04-09 | 5.0 MEDIUM | 5.3 MEDIUM |
Microsoft Communicator, and Communicator in Microsoft Office 2010 beta, allows remote attackers to cause a denial of service (memory consumption) via a large number of SIP INVITE requests, which trigger the creation of many sessions. | |||||
CVE-2009-2726 | 1 Digium | 3 Asterisk, S800i, S800i Firmware | 2025-04-09 | 7.8 HIGH | N/A |
The SIP channel driver in Asterisk Open Source 1.2.x before 1.2.34, 1.4.x before 1.4.26.1, 1.6.0.x before 1.6.0.12, and 1.6.1.x before 1.6.1.4; Asterisk Business Edition A.x.x, B.x.x before B.2.5.9, C.2.x before C.2.4.1, and C.3.x before C.3.1; and Asterisk Appliance s800i 1.2.x before 1.3.0.3 does not use a maximum width when invoking sscanf style functions, which allows remote attackers to cause a denial of service (stack memory consumption) via SIP packets containing large sequences of ASCII decimal characters, as demonstrated via vectors related to (1) the CSeq value in a SIP header, (2) large Content-Length value, and (3) SDP. | |||||
CVE-2009-2540 | 1 Opera | 1 Opera Browser | 2025-04-09 | 4.3 MEDIUM | N/A |
Opera, possibly 9.64 and earlier, allows remote attackers to cause a denial of service (memory consumption) via a large integer value for the length property of a Select object, a related issue to CVE-2009-1692. | |||||
CVE-2009-4017 | 3 Apple, Debian, Php | 3 Mac Os X, Debian Linux, Php | 2025-04-09 | 5.0 MEDIUM | N/A |
PHP before 5.2.12 and 5.3.x before 5.3.1 does not restrict the number of temporary files created when handling a multipart/form-data POST request, which allows remote attackers to cause a denial of service (resource exhaustion), and makes it easier for remote attackers to exploit local file inclusion vulnerabilities, via multiple requests, related to lack of support for the max_file_uploads directive. | |||||
CVE-2008-2364 | 4 Apache, Canonical, Fedoraproject and 1 more | 7 Http Server, Ubuntu Linux, Fedora and 4 more | 2025-04-09 | 5.0 MEDIUM | N/A |
The ap_proxy_http_process_response function in mod_proxy_http.c in the mod_proxy module in the Apache HTTP Server 2.0.63 and 2.2.8 does not limit the number of forwarded interim responses, which allows remote HTTP servers to cause a denial of service (memory consumption) via a large number of interim responses. | |||||
CVE-2025-21536 | 1 Oracle | 1 Mysql Server | 2025-04-08 | N/A | 4.9 MEDIUM |
Vulnerability in the MySQL Server product of Oracle MySQL (component: Server: Optimizer). Supported versions that are affected are 8.0.39 and prior, 8.4.2 and prior and 9.0.1 and prior. Easily exploitable vulnerability allows high privileged attacker with network access via multiple protocols to compromise MySQL Server. Successful attacks of this vulnerability can result in unauthorized ability to cause a hang or frequently repeatable crash (complete DOS) of MySQL Server. CVSS 3.1 Base Score 4.9 (Availability impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:L/PR:H/UI:N/S:U/C:N/I:N/A:H). | |||||
CVE-2025-21534 | 1 Oracle | 1 Mysql Server | 2025-04-08 | N/A | 4.9 MEDIUM |
Vulnerability in the MySQL Server product of Oracle MySQL (component: Server: Performance Schema). Supported versions that are affected are 8.0.39 and prior, 8.4.2 and prior and 9.0.1 and prior. Easily exploitable vulnerability allows high privileged attacker with network access via multiple protocols to compromise MySQL Server. Successful attacks of this vulnerability can result in unauthorized ability to cause a hang or frequently repeatable crash (complete DOS) of MySQL Server. CVSS 3.1 Base Score 4.9 (Availability impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:L/PR:H/UI:N/S:U/C:N/I:N/A:H). | |||||
CVE-2025-21531 | 1 Oracle | 2 Mysql Cluster, Mysql Server | 2025-04-08 | N/A | 4.9 MEDIUM |
Vulnerability in the MySQL Server product of Oracle MySQL (component: InnoDB). Supported versions that are affected are 8.0.40 and prior, 8.4.3 and prior and 9.1.0 and prior. Easily exploitable vulnerability allows high privileged attacker with network access via multiple protocols to compromise MySQL Server. Successful attacks of this vulnerability can result in unauthorized ability to cause a hang or frequently repeatable crash (complete DOS) of MySQL Server. CVSS 3.1 Base Score 4.9 (Availability impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:L/PR:H/UI:N/S:U/C:N/I:N/A:H). | |||||
CVE-2025-21525 | 1 Oracle | 1 Mysql Server | 2025-04-08 | N/A | 4.9 MEDIUM |
Vulnerability in the MySQL Server product of Oracle MySQL (component: Server: DDL). Supported versions that are affected are 8.0.39 and prior, 8.4.2 and prior and 9.0.1 and prior. Easily exploitable vulnerability allows high privileged attacker with network access via multiple protocols to compromise MySQL Server. Successful attacks of this vulnerability can result in unauthorized ability to cause a hang or frequently repeatable crash (complete DOS) of MySQL Server. CVSS 3.1 Base Score 4.9 (Availability impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:L/PR:H/UI:N/S:U/C:N/I:N/A:H). | |||||
CVE-2025-21522 | 1 Oracle | 1 Mysql Server | 2025-04-08 | N/A | 6.5 MEDIUM |
Vulnerability in the MySQL Server product of Oracle MySQL (component: Server: Parser). Supported versions that are affected are 8.0.40 and prior, 8.4.3 and prior and 9.1.0 and prior. Easily exploitable vulnerability allows low privileged attacker with network access via multiple protocols to compromise MySQL Server. Successful attacks of this vulnerability can result in unauthorized ability to cause a hang or frequently repeatable crash (complete DOS) of MySQL Server. CVSS 3.1 Base Score 6.5 (Availability impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H). | |||||
CVE-2025-21543 | 1 Oracle | 2 Mysql Cluster, Mysql Server | 2025-04-08 | N/A | 4.9 MEDIUM |
Vulnerability in the MySQL Server product of Oracle MySQL (component: Server: Packaging). Supported versions that are affected are 8.0.40 and prior, 8.4.3 and prior and 9.1.0 and prior. Easily exploitable vulnerability allows high privileged attacker with network access via multiple protocols to compromise MySQL Server. Successful attacks of this vulnerability can result in unauthorized ability to cause a hang or frequently repeatable crash (complete DOS) of MySQL Server. CVSS 3.1 Base Score 4.9 (Availability impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:L/PR:H/UI:N/S:U/C:N/I:N/A:H). | |||||
CVE-2025-32030 | 2025-04-08 | N/A | 7.5 HIGH | ||
Apollo Gateway provides utilities for combining multiple GraphQL microservices into a single GraphQL endpoint. Prior to 2.10.1, a vulnerability in Apollo Gateway allowed queries with deeply nested and reused named fragments to be prohibitively expensive to query plan, specifically during named fragment expansion. Named fragments were being expanded once per fragment spread during query planning, leading to exponential resource usage when deeply nested and reused fragments were involved. This could lead to excessive resource consumption and denial of service. This has been remediated in @apollo/gateway version 2.10.1. | |||||
CVE-2025-32031 | 2025-04-08 | N/A | 7.5 HIGH | ||
Apollo Gateway provides utilities for combining multiple GraphQL microservices into a single GraphQL endpoint. Prior to 2.10.1, a vulnerability in Apollo Gateway allowed queries with deeply nested and reused named fragments to be prohibitively expensive to query plan, specifically due to internal optimizations being frequently bypassed. The query planner includes an optimization that significantly speeds up planning for applicable GraphQL selections. However, queries with deeply nested and reused named fragments can generate many selections where this optimization does not apply, leading to significantly longer planning times. Because the query planner does not enforce a timeout, a small number of such queries can render gateway inoperable. This could lead to excessive resource consumption and denial of service. This has been remediated in @apollo/gateway version 2.10.1. | |||||
CVE-2025-31496 | 2025-04-08 | N/A | 7.5 HIGH | ||
apollo-compiler is a query-based compiler for the GraphQL query language. Prior to 1.27.0, a vulnerability in Apollo Compiler allowed queries with deeply nested and reused named fragments to be prohibitively expensive to validate. Named fragments were being processed once per fragment spread in some cases during query validation, leading to exponential resource usage when deeply nested and reused fragments were involved. This could lead to excessive resource consumption and denial of service in applications. This vulnerability is fixed in 1.27.0. | |||||
CVE-2025-32032 | 2025-04-08 | N/A | 7.5 HIGH | ||
The Apollo Router Core is a configurable, high-performance graph router written in Rust to run a federated supergraph that uses Apollo Federation 2. A vulnerability in Apollo Router allowed queries with deeply nested and reused named fragments to be prohibitively expensive to query plan, specifically due to internal optimizations being frequently bypassed. The query planner includes an optimization that significantly speeds up planning for applicable GraphQL selections. However, queries with deeply nested and reused named fragments can generate many selections where this optimization does not apply, leading to significantly longer planning times. Because the query planner does not enforce a timeout, a small number of such queries can exhaust router's thread pool, rendering it inoperable. This could lead to excessive resource consumption and denial of service. This has been remediated in apollo-router versions 1.61.2 and 2.1.1. | |||||
CVE-2025-32025 | 2025-04-08 | N/A | N/A | ||
bep/imagemeta is a Go library for reading EXIF, IPTC and XMP image meta data from JPEG, TIFF, PNG, and WebP files. The buffer created for parsing metadata for PNG and WebP images was only bounded by their input data type, which could lead to potentially large memory allocation, and unreasonably high for image metadata. Before v0.11.0, If you didn't trust the input images, this could be abused to construct denial-of-service attacks. v0.11.0 added a 10 MB upper limit. | |||||
CVE-2025-32024 | 2025-04-08 | N/A | N/A | ||
bep/imagemeta is a Go library for reading EXIF, IPTC and XMP image meta data from JPEG, TIFF, PNG, and WebP files. The EXIF data format allows for defining excessively large data structures in relatively small payloads. Before v0.10.0, If you didn't trust the input images, this could be abused to construct denial-of-service attacks. v0.10.0 added LimitNumTags (default 5000) and LimitTagSize (default 10000) options. | |||||
CVE-2025-32034 | 2025-04-08 | N/A | 7.5 HIGH | ||
The Apollo Router Core is a configurable, high-performance graph router written in Rust to run a federated supergraph that uses Apollo Federation 2. Prior to 1.61.2 and 2.1.1, a vulnerability in Apollo Router allowed queries with deeply nested and reused named fragments to be prohibitively expensive to query plan, specifically during named fragment expansion. Named fragments were being expanded once per fragment spread during query planning, leading to exponential resource usage when deeply nested and reused fragments were involved. This could lead to excessive resource consumption and denial of service. This has been remediated in apollo-router versions 1.61.2 and 2.1.1. |