Total
6187 CVE
| CVE | Vendors | Products | Updated | CVSS v2 | CVSS v3 |
|---|---|---|---|---|---|
| CVE-2023-53446 | 1 Linux | 1 Linux Kernel | 2025-12-12 | N/A | 7.8 HIGH |
| In the Linux kernel, the following vulnerability has been resolved: PCI/ASPM: Disable ASPM on MFD function removal to avoid use-after-free Struct pcie_link_state->downstream is a pointer to the pci_dev of function 0. Previously we retained that pointer when removing function 0, and subsequent ASPM policy changes dereferenced it, resulting in a use-after-free warning from KASAN, e.g.: # echo 1 > /sys/bus/pci/devices/0000:03:00.0/remove # echo powersave > /sys/module/pcie_aspm/parameters/policy BUG: KASAN: slab-use-after-free in pcie_config_aspm_link+0x42d/0x500 Call Trace: kasan_report+0xae/0xe0 pcie_config_aspm_link+0x42d/0x500 pcie_aspm_set_policy+0x8e/0x1a0 param_attr_store+0x162/0x2c0 module_attr_store+0x3e/0x80 PCIe spec r6.0, sec 7.5.3.7, recommends that software program the same ASPM Control value in all functions of multi-function devices. Disable ASPM and free the pcie_link_state when any child function is removed so we can discard the dangling pcie_link_state->downstream pointer and maintain the same ASPM Control configuration for all functions. [bhelgaas: commit log and comment] | |||||
| CVE-2025-39859 | 1 Linux | 1 Linux Kernel | 2025-12-12 | N/A | 7.8 HIGH |
| In the Linux kernel, the following vulnerability has been resolved: ptp: ocp: fix use-after-free bugs causing by ptp_ocp_watchdog The ptp_ocp_detach() only shuts down the watchdog timer if it is pending. However, if the timer handler is already running, the timer_delete_sync() is not called. This leads to race conditions where the devlink that contains the ptp_ocp is deallocated while the timer handler is still accessing it, resulting in use-after-free bugs. The following details one of the race scenarios. (thread 1) | (thread 2) ptp_ocp_remove() | ptp_ocp_detach() | ptp_ocp_watchdog() if (timer_pending(&bp->watchdog))| bp = timer_container_of() timer_delete_sync() | | devlink_free(devlink) //free | | bp-> //use Resolve this by unconditionally calling timer_delete_sync() to ensure the timer is reliably deactivated, preventing any access after free. | |||||
| CVE-2025-39855 | 1 Linux | 1 Linux Kernel | 2025-12-12 | N/A | 7.8 HIGH |
| In the Linux kernel, the following vulnerability has been resolved: ice: fix NULL access of tx->in_use in ice_ptp_ts_irq The E810 device has support for a "low latency" firmware interface to access and read the Tx timestamps. This interface does not use the standard Tx timestamp logic, due to the latency overhead of proxying sideband command requests over the firmware AdminQ. The logic still makes use of the Tx timestamp tracking structure, ice_ptp_tx, as it uses the same "ready" bitmap to track which Tx timestamps complete. Unfortunately, the ice_ptp_ts_irq() function does not check if the tracker is initialized before its first access. This results in NULL dereference or use-after-free bugs similar to the following: [245977.278756] BUG: kernel NULL pointer dereference, address: 0000000000000000 [245977.278774] RIP: 0010:_find_first_bit+0x19/0x40 [245977.278796] Call Trace: [245977.278809] ? ice_misc_intr+0x364/0x380 [ice] This can occur if a Tx timestamp interrupt races with the driver reset logic. Fix this by only checking the in_use bitmap (and other fields) if the tracker is marked as initialized. The reset flow will clear the init field under lock before it tears the tracker down, thus preventing any use-after-free or NULL access. | |||||
| CVE-2025-39854 | 1 Linux | 1 Linux Kernel | 2025-12-12 | N/A | 7.8 HIGH |
| In the Linux kernel, the following vulnerability has been resolved: ice: fix NULL access of tx->in_use in ice_ll_ts_intr Recent versions of the E810 firmware have support for an extra interrupt to handle report of the "low latency" Tx timestamps coming from the specialized low latency firmware interface. Instead of polling the registers, software can wait until the low latency interrupt is fired. This logic makes use of the Tx timestamp tracking structure, ice_ptp_tx, as it uses the same "ready" bitmap to track which Tx timestamps complete. Unfortunately, the ice_ll_ts_intr() function does not check if the tracker is initialized before its first access. This results in NULL dereference or use-after-free bugs similar to the issues fixed in the ice_ptp_ts_irq() function. Fix this by only checking the in_use bitmap (and other fields) if the tracker is marked as initialized. The reset flow will clear the init field under lock before it tears the tracker down, thus preventing any use-after-free or NULL access. | |||||
| CVE-2025-14372 | 2025-12-12 | N/A | 6.1 MEDIUM | ||
| Use after free in Password Manager in Google Chrome prior to 143.0.7499.110 allowed a remote attacker to potentially perform a sandbox escape via a crafted HTML page. (Chromium security severity: Medium) | |||||
| CVE-2023-53398 | 1 Linux | 1 Linux Kernel | 2025-12-12 | N/A | 7.8 HIGH |
| In the Linux kernel, the following vulnerability has been resolved: mlx5: fix possible ptp queue fifo use-after-free Fifo indexes are not checked during pop operations and it leads to potential use-after-free when poping from empty queue. Such case was possible during re-sync action. WARN_ON_ONCE covers future cases. There were out-of-order cqe spotted which lead to drain of the queue and use-after-free because of lack of fifo pointers check. Special check and counter are added to avoid resync operation if SKB could not exist in the fifo because of OOO cqe (skb_id must be between consumer and producer index). | |||||
| CVE-2025-39861 | 1 Linux | 1 Linux Kernel | 2025-12-12 | N/A | 7.8 HIGH |
| In the Linux kernel, the following vulnerability has been resolved: Bluetooth: vhci: Prevent use-after-free by removing debugfs files early Move the creation of debugfs files into a dedicated function, and ensure they are explicitly removed during vhci_release(), before associated data structures are freed. Previously, debugfs files such as "force_suspend", "force_wakeup", and others were created under hdev->debugfs but not removed in vhci_release(). Since vhci_release() frees the backing vhci_data structure, any access to these files after release would result in use-after-free errors. Although hdev->debugfs is later freed in hci_release_dev(), user can access files after vhci_data is freed but before hdev->debugfs is released. | |||||
| CVE-2025-39863 | 1 Linux | 1 Linux Kernel | 2025-12-12 | N/A | 7.8 HIGH |
| In the Linux kernel, the following vulnerability has been resolved: wifi: brcmfmac: fix use-after-free when rescheduling brcmf_btcoex_info work The brcmf_btcoex_detach() only shuts down the btcoex timer, if the flag timer_on is false. However, the brcmf_btcoex_timerfunc(), which runs as timer handler, sets timer_on to false. This creates critical race conditions: 1.If brcmf_btcoex_detach() is called while brcmf_btcoex_timerfunc() is executing, it may observe timer_on as false and skip the call to timer_shutdown_sync(). 2.The brcmf_btcoex_timerfunc() may then reschedule the brcmf_btcoex_info worker after the cancel_work_sync() has been executed, resulting in use-after-free bugs. The use-after-free bugs occur in two distinct scenarios, depending on the timing of when the brcmf_btcoex_info struct is freed relative to the execution of its worker thread. Scenario 1: Freed before the worker is scheduled The brcmf_btcoex_info is deallocated before the worker is scheduled. A race condition can occur when schedule_work(&bt_local->work) is called after the target memory has been freed. The sequence of events is detailed below: CPU0 | CPU1 brcmf_btcoex_detach | brcmf_btcoex_timerfunc | bt_local->timer_on = false; if (cfg->btcoex->timer_on) | ... | cancel_work_sync(); | ... | kfree(cfg->btcoex); // FREE | | schedule_work(&bt_local->work); // USE Scenario 2: Freed after the worker is scheduled The brcmf_btcoex_info is freed after the worker has been scheduled but before or during its execution. In this case, statements within the brcmf_btcoex_handler() — such as the container_of macro and subsequent dereferences of the brcmf_btcoex_info object will cause a use-after-free access. The following timeline illustrates this scenario: CPU0 | CPU1 brcmf_btcoex_detach | brcmf_btcoex_timerfunc | bt_local->timer_on = false; if (cfg->btcoex->timer_on) | ... | cancel_work_sync(); | ... | schedule_work(); // Reschedule | kfree(cfg->btcoex); // FREE | brcmf_btcoex_handler() // Worker /* | btci = container_of(....); // USE The kfree() above could | ... also occur at any point | btci-> // USE during the worker's execution| */ | To resolve the race conditions, drop the conditional check and call timer_shutdown_sync() directly. It can deactivate the timer reliably, regardless of its current state. Once stopped, the timer_on state is then set to false. | |||||
| CVE-2025-39882 | 1 Linux | 1 Linux Kernel | 2025-12-12 | N/A | 7.8 HIGH |
| In the Linux kernel, the following vulnerability has been resolved: drm/mediatek: fix potential OF node use-after-free The for_each_child_of_node() helper drops the reference it takes to each node as it iterates over children and an explicit of_node_put() is only needed when exiting the loop early. Drop the recently introduced bogus additional reference count decrement at each iteration that could potentially lead to a use-after-free. | |||||
| CVE-2025-62472 | 1 Microsoft | 14 Windows 10 1607, Windows 10 1809, Windows 10 21h2 and 11 more | 2025-12-12 | N/A | 7.8 HIGH |
| Use of uninitialized resource in Windows Remote Access Connection Manager allows an authorized attacker to elevate privileges locally. | |||||
| CVE-2025-62565 | 1 Microsoft | 12 Windows 10 1607, Windows 10 1809, Windows 10 21h2 and 9 more | 2025-12-12 | N/A | 7.3 HIGH |
| Use after free in Windows Shell allows an authorized attacker to elevate privileges locally. | |||||
| CVE-2025-62569 | 1 Microsoft | 4 Windows 11 24h2, Windows 11 25h2, Windows Server 2022 23h2 and 1 more | 2025-12-12 | N/A | 7.0 HIGH |
| Use after free in Microsoft Brokering File System allows an authorized attacker to elevate privileges locally. | |||||
| CVE-2025-14569 | 2025-12-12 | 4.3 MEDIUM | 5.3 MEDIUM | ||
| A vulnerability was detected in ggml-org whisper.cpp up to 1.8.2. Affected is the function read_audio_data of the file /whisper.cpp/examples/common-whisper.cpp. The manipulation results in use after free. The attack requires a local approach. The exploit is now public and may be used. The project was informed of the problem early through an issue report but has not responded yet. | |||||
| CVE-2025-39871 | 1 Linux | 1 Linux Kernel | 2025-12-12 | N/A | 7.8 HIGH |
| In the Linux kernel, the following vulnerability has been resolved: dmaengine: idxd: Remove improper idxd_free The call to idxd_free() introduces a duplicate put_device() leading to a reference count underflow: refcount_t: underflow; use-after-free. WARNING: CPU: 15 PID: 4428 at lib/refcount.c:28 refcount_warn_saturate+0xbe/0x110 ... Call Trace: <TASK> idxd_remove+0xe4/0x120 [idxd] pci_device_remove+0x3f/0xb0 device_release_driver_internal+0x197/0x200 driver_detach+0x48/0x90 bus_remove_driver+0x74/0xf0 pci_unregister_driver+0x2e/0xb0 idxd_exit_module+0x34/0x7a0 [idxd] __do_sys_delete_module.constprop.0+0x183/0x280 do_syscall_64+0x54/0xd70 entry_SYSCALL_64_after_hwframe+0x76/0x7e The idxd_unregister_devices() which is invoked at the very beginning of idxd_remove(), already takes care of the necessary put_device() through the following call path: idxd_unregister_devices() -> device_unregister() -> put_device() In addition, when CONFIG_DEBUG_KOBJECT_RELEASE is enabled, put_device() may trigger asynchronous cleanup via schedule_delayed_work(). If idxd_free() is called immediately after, it can result in a use-after-free. Remove the improper idxd_free() to avoid both the refcount underflow and potential memory corruption during module unload. | |||||
| CVE-2025-39896 | 1 Linux | 1 Linux Kernel | 2025-12-12 | N/A | 7.8 HIGH |
| In the Linux kernel, the following vulnerability has been resolved: accel/ivpu: Prevent recovery work from being queued during device removal Use disable_work_sync() instead of cancel_work_sync() in ivpu_dev_fini() to ensure that no new recovery work items can be queued after device removal has started. Previously, recovery work could be scheduled even after canceling existing work, potentially leading to use-after-free bugs if recovery accessed freed resources. Rename ivpu_pm_cancel_recovery() to ivpu_pm_disable_recovery() to better reflect its new behavior. | |||||
| CVE-2023-53377 | 1 Linux | 1 Linux Kernel | 2025-12-12 | N/A | 7.8 HIGH |
| In the Linux kernel, the following vulnerability has been resolved: cifs: prevent use-after-free by freeing the cfile later In smb2_compound_op we have a possible use-after-free which can cause hard to debug problems later on. This was revealed during stress testing with KASAN enabled kernel. Fixing it by moving the cfile free call to a few lines below, after the usage. | |||||
| CVE-2023-53374 | 1 Linux | 1 Linux Kernel | 2025-12-12 | N/A | 7.8 HIGH |
| In the Linux kernel, the following vulnerability has been resolved: Bluetooth: hci_conn: fail SCO/ISO via hci_conn_failed if ACL gone early Not calling hci_(dis)connect_cfm before deleting conn referred to by a socket generally results to use-after-free. When cleaning up SCO connections when the parent ACL is deleted too early, use hci_conn_failed to do the connection cleanup properly. We also need to clean up ISO connections in a similar situation when connecting has started but LE Create CIS is not yet sent, so do it too here. | |||||
| CVE-2025-36922 | 1 Google | 1 Android | 2025-12-12 | N/A | 6.7 MEDIUM |
| In bigo_map of bigo_iommu.c, there is a possible information disclosure due to a use after free. This could lead to local escalation of privilege in the OS Kernel level with System execution privileges needed. User interaction is not needed for exploitation. | |||||
| CVE-2023-53373 | 1 Linux | 1 Linux Kernel | 2025-12-12 | N/A | 7.8 HIGH |
| In the Linux kernel, the following vulnerability has been resolved: crypto: seqiv - Handle EBUSY correctly As it is seqiv only handles the special return value of EINPROGERSS, which means that in all other cases it will free data related to the request. However, as the caller of seqiv may specify MAY_BACKLOG, we also need to expect EBUSY and treat it in the same way. Otherwise backlogged requests will trigger a use-after-free. | |||||
| CVE-2022-50411 | 1 Linux | 1 Linux Kernel | 2025-12-12 | N/A | 7.8 HIGH |
| In the Linux kernel, the following vulnerability has been resolved: ACPICA: Fix error code path in acpi_ds_call_control_method() A use-after-free in acpi_ps_parse_aml() after a failing invocaion of acpi_ds_call_control_method() is reported by KASAN [1] and code inspection reveals that next_walk_state pushed to the thread by acpi_ds_create_walk_state() is freed on errors, but it is not popped from the thread beforehand. Thus acpi_ds_get_current_walk_state() called by acpi_ps_parse_aml() subsequently returns it as the new walk state which is incorrect. To address this, make acpi_ds_call_control_method() call acpi_ds_pop_walk_state() to pop next_walk_state from the thread before returning an error. | |||||
