Vulnerabilities (CVE)

Filtered by CWE-401
Total 990 CVE
CVE Vendors Products Updated CVSS v2 CVSS v3
CVE-2024-1023 2024-11-25 N/A 6.5 MEDIUM
A vulnerability in the Eclipse Vert.x toolkit results in a memory leak due to using Netty FastThreadLocal data structures. Specifically, when the Vert.x HTTP client establishes connections to different hosts, triggering the memory leak. The leak can be accelerated with intimate runtime knowledge, allowing an attacker to exploit this vulnerability. For instance, a server accepting arbitrary internet addresses could serve as an attack vector by connecting to these addresses, thereby accelerating the memory leak.
CVE-2024-53076 1 Linux 1 Linux Kernel 2024-11-22 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: iio: gts-helper: Fix memory leaks for the error path of iio_gts_build_avail_scale_table() If per_time_scales[i] or per_time_gains[i] kcalloc fails in the for loop of iio_gts_build_avail_scale_table(), the err_free_out will fail to call kfree() each time when i is reduced to 0, so all the per_time_scales[0] and per_time_gains[0] will not be freed, which will cause memory leaks. Fix it by checking if i >= 0.
CVE-2024-50165 1 Linux 1 Linux Kernel 2024-11-22 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: bpf: Preserve param->string when parsing mount options In bpf_parse_param(), keep the value of param->string intact so it can be freed later. Otherwise, the kmalloc area pointed to by param->string will be leaked as shown below: unreferenced object 0xffff888118c46d20 (size 8): comm "new_name", pid 12109, jiffies 4295580214 hex dump (first 8 bytes): 61 6e 79 00 38 c9 5c 7e any.8.\~ backtrace (crc e1b7f876): [<00000000c6848ac7>] kmemleak_alloc+0x4b/0x80 [<00000000de9f7d00>] __kmalloc_node_track_caller_noprof+0x36e/0x4a0 [<000000003e29b886>] memdup_user+0x32/0xa0 [<0000000007248326>] strndup_user+0x46/0x60 [<0000000035b3dd29>] __x64_sys_fsconfig+0x368/0x3d0 [<0000000018657927>] x64_sys_call+0xff/0x9f0 [<00000000c0cabc95>] do_syscall_64+0x3b/0xc0 [<000000002f331597>] entry_SYSCALL_64_after_hwframe+0x4b/0x53
CVE-2024-5294 2024-11-21 N/A 4.3 MEDIUM
D-Link DIR-3040 prog.cgi websSecurityHandler Memory Leak Denial-of-Service Vulnerability. This vulnerability allows network-adjacent attackers to create a denial-of-service condition on affected installations of D-Link DIR-3040 routers. Authentication is not required to exploit this vulnerability. The specific flaw exists within the prog.cgi program, which handles HNAP requests made to the lighttpd webserver listening on ports 80 and 443. The issue results from the lack of proper memory management when processing HTTP cookie values. An attacker can leverage this vulnerability to create a denial-of-service condition on the system. . Was ZDI-CAN-21668.
CVE-2024-4435 2024-11-21 N/A 5.9 MEDIUM
When storing unbounded types in a BTreeMap, a node is represented as a linked list of "memory chunks". It was discovered recently that when we deallocate a node, in some cases only the first memory chunk is deallocated, and the rest of the memory chunks remain (incorrectly) allocated, causing a memory leak. In the worst case, depending on how a canister uses the BTreeMap, an adversary could interact with the canister through its API and trigger interactions with the map that keep consuming memory due to the memory leak. This could potentially lead to using an excessive amount of memory, or even running out of memory. This issue has been fixed in #212 https://github.com/dfinity/stable-structures/pull/212  by changing the logic for deallocating nodes to ensure that all of a node's memory chunks are deallocated and users are asked to upgrade to version 0.6.4.. Tests have been added to prevent regressions of this nature moving forward. Note: Users of stable-structure < 0.6.0 are not affected. Users who are not storing unbounded types in BTreeMap are not affected and do not need to upgrade. Otherwise, an upgrade to version 0.6.4 is necessary.
CVE-2024-42152 1 Linux 1 Linux Kernel 2024-11-21 N/A 4.7 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: nvmet: fix a possible leak when destroy a ctrl during qp establishment In nvmet_sq_destroy we capture sq->ctrl early and if it is non-NULL we know that a ctrl was allocated (in the admin connect request handler) and we need to release pending AERs, clear ctrl->sqs and sq->ctrl (for nvme-loop primarily), and drop the final reference on the ctrl. However, a small window is possible where nvmet_sq_destroy starts (as a result of the client giving up and disconnecting) concurrently with the nvme admin connect cmd (which may be in an early stage). But *before* kill_and_confirm of sq->ref (i.e. the admin connect managed to get an sq live reference). In this case, sq->ctrl was allocated however after it was captured in a local variable in nvmet_sq_destroy. This prevented the final reference drop on the ctrl. Solve this by re-capturing the sq->ctrl after all inflight request has completed, where for sure sq->ctrl reference is final, and move forward based on that. This issue was observed in an environment with many hosts connecting multiple ctrls simoutanuosly, creating a delay in allocating a ctrl leading up to this race window.
CVE-2024-42070 1 Linux 1 Linux Kernel 2024-11-21 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: netfilter: nf_tables: fully validate NFT_DATA_VALUE on store to data registers register store validation for NFT_DATA_VALUE is conditional, however, the datatype is always either NFT_DATA_VALUE or NFT_DATA_VERDICT. This only requires a new helper function to infer the register type from the set datatype so this conditional check can be removed. Otherwise, pointer to chain object can be leaked through the registers.
CVE-2024-41172 1 Apache 1 Cxf 2024-11-21 N/A 7.5 HIGH
In versions of Apache CXF before 3.6.4 and 4.0.5 (3.5.x and lower versions are not impacted), a CXF HTTP client conduit may prevent HTTPClient instances from being garbage collected and it is possible that memory consumption will continue to increase, eventually causing the application to run out of memory
CVE-2024-41076 1 Linux 1 Linux Kernel 2024-11-21 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: NFSv4: Fix memory leak in nfs4_set_security_label We leak nfs_fattr and nfs4_label every time we set a security xattr.
CVE-2024-41066 1 Linux 1 Linux Kernel 2024-11-21 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: ibmvnic: Add tx check to prevent skb leak Below is a summary of how the driver stores a reference to an skb during transmit: tx_buff[free_map[consumer_index]]->skb = new_skb; free_map[consumer_index] = IBMVNIC_INVALID_MAP; consumer_index ++; Where variable data looks like this: free_map == [4, IBMVNIC_INVALID_MAP, IBMVNIC_INVALID_MAP, 0, 3] consumer_index^ tx_buff == [skb=null, skb=<ptr>, skb=<ptr>, skb=null, skb=null] The driver has checks to ensure that free_map[consumer_index] pointed to a valid index but there was no check to ensure that this index pointed to an unused/null skb address. So, if, by some chance, our free_map and tx_buff lists become out of sync then we were previously risking an skb memory leak. This could then cause tcp congestion control to stop sending packets, eventually leading to ETIMEDOUT. Therefore, add a conditional to ensure that the skb address is null. If not then warn the user (because this is still a bug that should be patched) and free the old pointer to prevent memleak/tcp problems.
CVE-2024-41006 1 Linux 1 Linux Kernel 2024-11-21 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: netrom: Fix a memory leak in nr_heartbeat_expiry() syzbot reported a memory leak in nr_create() [0]. Commit 409db27e3a2e ("netrom: Fix use-after-free of a listening socket.") added sock_hold() to the nr_heartbeat_expiry() function, where a) a socket has a SOCK_DESTROY flag or b) a listening socket has a SOCK_DEAD flag. But in the case "a," when the SOCK_DESTROY flag is set, the file descriptor has already been closed and the nr_release() function has been called. So it makes no sense to hold the reference count because no one will call another nr_destroy_socket() and put it as in the case "b." nr_connect nr_establish_data_link nr_start_heartbeat nr_release switch (nr->state) case NR_STATE_3 nr->state = NR_STATE_2 sock_set_flag(sk, SOCK_DESTROY); nr_rx_frame nr_process_rx_frame switch (nr->state) case NR_STATE_2 nr_state2_machine() nr_disconnect() nr_sk(sk)->state = NR_STATE_0 sock_set_flag(sk, SOCK_DEAD) nr_heartbeat_expiry switch (nr->state) case NR_STATE_0 if (sock_flag(sk, SOCK_DESTROY) || (sk->sk_state == TCP_LISTEN && sock_flag(sk, SOCK_DEAD))) sock_hold() // ( !!! ) nr_destroy_socket() To fix the memory leak, let's call sock_hold() only for a listening socket. Found by InfoTeCS on behalf of Linux Verification Center (linuxtesting.org) with Syzkaller. [0]: https://syzkaller.appspot.com/bug?extid=d327a1f3b12e1e206c16
CVE-2024-41002 1 Linux 1 Linux Kernel 2024-11-21 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: crypto: hisilicon/sec - Fix memory leak for sec resource release The AIV is one of the SEC resources. When releasing resources, it need to release the AIV resources at the same time. Otherwise, memory leakage occurs. The aiv resource release is added to the sec resource release function.
CVE-2024-41001 1 Linux 1 Linux Kernel 2024-11-21 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: io_uring/sqpoll: work around a potential audit memory leak kmemleak complains that there's a memory leak related to connect handling: unreferenced object 0xffff0001093bdf00 (size 128): comm "iou-sqp-455", pid 457, jiffies 4294894164 hex dump (first 32 bytes): 02 00 fa ea 7f 00 00 01 00 00 00 00 00 00 00 00 ................ 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ backtrace (crc 2e481b1a): [<00000000c0a26af4>] kmemleak_alloc+0x30/0x38 [<000000009c30bb45>] kmalloc_trace+0x228/0x358 [<000000009da9d39f>] __audit_sockaddr+0xd0/0x138 [<0000000089a93e34>] move_addr_to_kernel+0x1a0/0x1f8 [<000000000b4e80e6>] io_connect_prep+0x1ec/0x2d4 [<00000000abfbcd99>] io_submit_sqes+0x588/0x1e48 [<00000000e7c25e07>] io_sq_thread+0x8a4/0x10e4 [<00000000d999b491>] ret_from_fork+0x10/0x20 which can can happen if: 1) The command type does something on the prep side that triggers an audit call. 2) The thread hasn't done any operations before this that triggered an audit call inside ->issue(), where we have audit_uring_entry() and audit_uring_exit(). Work around this by issuing a blanket NOP operation before the SQPOLL does anything.
CVE-2024-40997 1 Linux 1 Linux Kernel 2024-11-21 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: cpufreq: amd-pstate: fix memory leak on CPU EPP exit The cpudata memory from kzalloc() in amd_pstate_epp_cpu_init() is not freed in the analogous exit function, so fix that. [ rjw: Subject and changelog edits ]
CVE-2024-40934 1 Linux 1 Linux Kernel 2024-11-21 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: HID: logitech-dj: Fix memory leak in logi_dj_recv_switch_to_dj_mode() Fix a memory leak on logi_dj_recv_send_report() error path.
CVE-2024-40932 1 Linux 1 Linux Kernel 2024-11-21 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: drm/exynos/vidi: fix memory leak in .get_modes() The duplicated EDID is never freed. Fix it.
CVE-2024-3653 2024-11-21 N/A 5.3 MEDIUM
A vulnerability was found in Undertow. This issue requires enabling the learning-push handler in the server's config, which is disabled by default, leaving the maxAge config in the handler unconfigured. The default is -1, which makes the handler vulnerable. If someone overwrites that config, the server is not subject to the attack. The attacker needs to be able to reach the server with a normal HTTP request.
CVE-2024-39549 1 Juniper 2 Junos, Junos Os Evolved 2024-11-21 N/A 7.5 HIGH
A Missing Release of Memory after Effective Lifetime vulnerability in the routing process daemon (rpd) of Juniper Networks Junos OS and Junos OS Evolved allows an attacker to send a malformed BGP Path attribute update which allocates memory used to log the bad path attribute. This memory is not properly freed in all circumstances, leading to a Denial of Service (DoS). Consumed memory can be freed by manually restarting Routing Protocol Daemon (rpd). Memory utilization could be monitored by:  user@host> show system memory or show system monitor memory status This issue affects: Junos OS:  * All versions before 21.2R3-S8,  * from 21.4 before 21.4R3-S8, * from 22.2 before 22.2R3-S4,  * from 22.3 before 22.3R3-S3,  * from 22.4 before 22.4R3-S3, * from 23.2 before 23.2R2-S1,  * from 23.4 before 23.4R1-S2, 23.4R2. Junos OS Evolved: * All versions before 21.2R3-S8-EVO, * from 21.4 before 21.4R3-S8-EVO, * from 22.2 before 22.2R3-S4-EVO, * from 22.3 before 22.3R3-S3-EVO, * from 22.4 before 22.4R3-S3-EVO, * from 23.2 before 23.2R2-S1-EVO, * from 23.4 before 23.4R1-S2-EVO, 23.4R2-EVO.
CVE-2024-39536 2024-11-21 N/A 5.3 MEDIUM
A Missing Release of Memory after Effective Lifetime vulnerability in the Periodic Packet Management Daemon (ppmd) of Juniper Networks Junos OS and Junos OS Evolved allows an unauthenticated adjacent attacker to cause a Denial-of-Service (DoS). When a BFD session configured with authentication flaps, ppmd memory can leak. Whether the leak happens depends on a race condition which is outside the attackers control. This issue only affects BFD operating in distributed aka delegated (which is the default behavior) or inline mode. Whether the leak occurs can be monitored with the following CLI command: > show ppm request-queue FPC     Pending-request fpc0                   2 request-total-pending: 2 where a continuously increasing number of pending requests is indicative of the leak.  This issue affects: Junos OS: * All versions before 21.2R3-S8, * 21.4 versions before 21.4R3-S7, * 22.1 versions before 22.1R3-S4, * 22.2 versions before 22.2R3-S4, * 22.3 versions before 22.3R3, * 22.4 versions before 22.4R2-S2, 22.4R3. Junos OS Evolved: * All versions before 21.2R3-S8-EVO, * 21.4-EVO versions before 21.4R3-S7-EVO, * 22.2-EVO versions before 22.2R3-S4-EVO, * 22.3-EVO versions before 22.3R3-EVO, * 22.4-EVO versions before 22.4R3-EVO.
CVE-2024-39493 1 Linux 1 Linux Kernel 2024-11-21 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: crypto: qat - Fix ADF_DEV_RESET_SYNC memory leak Using completion_done to determine whether the caller has gone away only works after a complete call. Furthermore it's still possible that the caller has not yet called wait_for_completion, resulting in another potential UAF. Fix this by making the caller use cancel_work_sync and then freeing the memory safely.