Total
3192 CVE
CVE | Vendors | Products | Updated | CVSS v2 | CVSS v3 |
---|---|---|---|---|---|
CVE-2022-26527 | 3 Google, Linux, Realtek | 3 Android, Linux Kernel, Bluetooth Mesh Software Development Kit | 2024-11-21 | N/A | 6.5 MEDIUM |
Realtek Linux/Android Bluetooth Mesh SDK has a buffer overflow vulnerability due to insufficient validation for the size of segmented packets’ reference parameter. An unauthenticated attacker in the adjacent network can exploit this vulnerability to cause buffer overflow and disrupt service. | |||||
CVE-2022-26414 | 1 Zyxel | 64 Ax7501-b0, Ax7501-b0 Firmware, Dx5401-b0 and 61 more | 2024-11-21 | 4.9 MEDIUM | 6.0 MEDIUM |
A potential buffer overflow vulnerability was identified in some internal functions of Zyxel VMG3312-T20A firmware version 5.30(ABFX.5)C0, which could be exploited by a local authenticated attacker to cause a denial of service. | |||||
CVE-2022-26342 | 1 Tcl | 1 Linkhub Mesh Wifi Ac1200 | 2024-11-21 | N/A | 9.8 CRITICAL |
A buffer overflow vulnerability exists in the confsrv ucloud_set_node_location functionality of TCL LinkHub Mesh Wi-Fi MS1G_00_01.00_14. A specially-crafted network packet can lead to a buffer overflow. An attacker can send a malicious packet to trigger this vulnerability. | |||||
CVE-2022-26335 | 1 Siemens | 48 Scalance X302-7eec, Scalance X302-7eec Firmware, Scalance X304-2fe and 45 more | 2024-11-21 | 7.8 HIGH | 7.5 HIGH |
A vulnerability has been identified in SCALANCE X302-7 EEC (230V), SCALANCE X302-7 EEC (230V, coated), SCALANCE X302-7 EEC (24V), SCALANCE X302-7 EEC (24V, coated), SCALANCE X302-7 EEC (2x 230V), SCALANCE X302-7 EEC (2x 230V, coated), SCALANCE X302-7 EEC (2x 24V), SCALANCE X302-7 EEC (2x 24V, coated), SCALANCE X304-2FE, SCALANCE X306-1LD FE, SCALANCE X307-2 EEC (230V), SCALANCE X307-2 EEC (230V, coated), SCALANCE X307-2 EEC (24V), SCALANCE X307-2 EEC (24V, coated), SCALANCE X307-2 EEC (2x 230V), SCALANCE X307-2 EEC (2x 230V, coated), SCALANCE X307-2 EEC (2x 24V), SCALANCE X307-2 EEC (2x 24V, coated), SCALANCE X307-3, SCALANCE X307-3, SCALANCE X307-3LD, SCALANCE X307-3LD, SCALANCE X308-2, SCALANCE X308-2, SCALANCE X308-2LD, SCALANCE X308-2LD, SCALANCE X308-2LH, SCALANCE X308-2LH, SCALANCE X308-2LH+, SCALANCE X308-2LH+, SCALANCE X308-2M, SCALANCE X308-2M, SCALANCE X308-2M PoE, SCALANCE X308-2M PoE, SCALANCE X308-2M TS, SCALANCE X308-2M TS, SCALANCE X310, SCALANCE X310, SCALANCE X310FE, SCALANCE X310FE, SCALANCE X320-1 FE, SCALANCE X320-1-2LD FE, SCALANCE X408-2, SCALANCE XR324-12M (230V, ports on front), SCALANCE XR324-12M (230V, ports on front), SCALANCE XR324-12M (230V, ports on rear), SCALANCE XR324-12M (230V, ports on rear), SCALANCE XR324-12M (24V, ports on front), SCALANCE XR324-12M (24V, ports on front), SCALANCE XR324-12M (24V, ports on rear), SCALANCE XR324-12M (24V, ports on rear), SCALANCE XR324-12M TS (24V), SCALANCE XR324-12M TS (24V), SCALANCE XR324-4M EEC (100-240VAC/60-250VDC, ports on front), SCALANCE XR324-4M EEC (100-240VAC/60-250VDC, ports on front), SCALANCE XR324-4M EEC (100-240VAC/60-250VDC, ports on rear), SCALANCE XR324-4M EEC (100-240VAC/60-250VDC, ports on rear), SCALANCE XR324-4M EEC (24V, ports on front), SCALANCE XR324-4M EEC (24V, ports on front), SCALANCE XR324-4M EEC (24V, ports on rear), SCALANCE XR324-4M EEC (24V, ports on rear), SCALANCE XR324-4M EEC (2x 100-240VAC/60-250VDC, ports on front), SCALANCE XR324-4M EEC (2x 100-240VAC/60-250VDC, ports on front), SCALANCE XR324-4M EEC (2x 100-240VAC/60-250VDC, ports on rear), SCALANCE XR324-4M EEC (2x 100-240VAC/60-250VDC, ports on rear), SCALANCE XR324-4M EEC (2x 24V, ports on front), SCALANCE XR324-4M EEC (2x 24V, ports on front), SCALANCE XR324-4M EEC (2x 24V, ports on rear), SCALANCE XR324-4M EEC (2x 24V, ports on rear), SCALANCE XR324-4M PoE (230V, ports on front), SCALANCE XR324-4M PoE (230V, ports on rear), SCALANCE XR324-4M PoE (24V, ports on front), SCALANCE XR324-4M PoE (24V, ports on rear), SCALANCE XR324-4M PoE TS (24V, ports on front), SIPLUS NET SCALANCE X308-2. Affected devices do not properly validate the URI of incoming HTTP GET requests. This could allow an unauthenticated remote attacker to crash affected devices. | |||||
CVE-2022-26334 | 1 Siemens | 48 Scalance X302-7eec, Scalance X302-7eec Firmware, Scalance X304-2fe and 45 more | 2024-11-21 | 7.8 HIGH | 7.5 HIGH |
A vulnerability has been identified in SCALANCE X302-7 EEC (230V), SCALANCE X302-7 EEC (230V, coated), SCALANCE X302-7 EEC (24V), SCALANCE X302-7 EEC (24V, coated), SCALANCE X302-7 EEC (2x 230V), SCALANCE X302-7 EEC (2x 230V, coated), SCALANCE X302-7 EEC (2x 24V), SCALANCE X302-7 EEC (2x 24V, coated), SCALANCE X304-2FE, SCALANCE X306-1LD FE, SCALANCE X307-2 EEC (230V), SCALANCE X307-2 EEC (230V, coated), SCALANCE X307-2 EEC (24V), SCALANCE X307-2 EEC (24V, coated), SCALANCE X307-2 EEC (2x 230V), SCALANCE X307-2 EEC (2x 230V, coated), SCALANCE X307-2 EEC (2x 24V), SCALANCE X307-2 EEC (2x 24V, coated), SCALANCE X307-3, SCALANCE X307-3, SCALANCE X307-3LD, SCALANCE X307-3LD, SCALANCE X308-2, SCALANCE X308-2, SCALANCE X308-2LD, SCALANCE X308-2LD, SCALANCE X308-2LH, SCALANCE X308-2LH, SCALANCE X308-2LH+, SCALANCE X308-2LH+, SCALANCE X308-2M, SCALANCE X308-2M, SCALANCE X308-2M PoE, SCALANCE X308-2M PoE, SCALANCE X308-2M TS, SCALANCE X308-2M TS, SCALANCE X310, SCALANCE X310, SCALANCE X310FE, SCALANCE X310FE, SCALANCE X320-1 FE, SCALANCE X320-1-2LD FE, SCALANCE X408-2, SCALANCE XR324-12M (230V, ports on front), SCALANCE XR324-12M (230V, ports on front), SCALANCE XR324-12M (230V, ports on rear), SCALANCE XR324-12M (230V, ports on rear), SCALANCE XR324-12M (24V, ports on front), SCALANCE XR324-12M (24V, ports on front), SCALANCE XR324-12M (24V, ports on rear), SCALANCE XR324-12M (24V, ports on rear), SCALANCE XR324-12M TS (24V), SCALANCE XR324-12M TS (24V), SCALANCE XR324-4M EEC (100-240VAC/60-250VDC, ports on front), SCALANCE XR324-4M EEC (100-240VAC/60-250VDC, ports on front), SCALANCE XR324-4M EEC (100-240VAC/60-250VDC, ports on rear), SCALANCE XR324-4M EEC (100-240VAC/60-250VDC, ports on rear), SCALANCE XR324-4M EEC (24V, ports on front), SCALANCE XR324-4M EEC (24V, ports on front), SCALANCE XR324-4M EEC (24V, ports on rear), SCALANCE XR324-4M EEC (24V, ports on rear), SCALANCE XR324-4M EEC (2x 100-240VAC/60-250VDC, ports on front), SCALANCE XR324-4M EEC (2x 100-240VAC/60-250VDC, ports on front), SCALANCE XR324-4M EEC (2x 100-240VAC/60-250VDC, ports on rear), SCALANCE XR324-4M EEC (2x 100-240VAC/60-250VDC, ports on rear), SCALANCE XR324-4M EEC (2x 24V, ports on front), SCALANCE XR324-4M EEC (2x 24V, ports on front), SCALANCE XR324-4M EEC (2x 24V, ports on rear), SCALANCE XR324-4M EEC (2x 24V, ports on rear), SCALANCE XR324-4M PoE (230V, ports on front), SCALANCE XR324-4M PoE (230V, ports on rear), SCALANCE XR324-4M PoE (24V, ports on front), SCALANCE XR324-4M PoE (24V, ports on rear), SCALANCE XR324-4M PoE TS (24V, ports on front), SIPLUS NET SCALANCE X308-2. Affected devices do not properly validate the GET parameter XNo of incoming HTTP requests. This could allow an unauthenticated remote attacker to crash affected devices. | |||||
CVE-2022-26259 | 1 Xiongmaitech | 20 Ahb80n16t-gs, Ahb80n16t-gs Firmware, Ahb80n32f4-lme and 17 more | 2024-11-21 | 4.6 MEDIUM | 7.8 HIGH |
A buffer over flow in Xiongmai DVR devices NBD80X16S-KL, NBD80X09S-KL, NBD80X08S-KL, NBD80X09RA-KL, AHB80X04R-MH, AHB80X04R-MH-V2, AHB80X04-R-MH-V3, AHB80N16T-GS, AHB80N32F4-LME, and NBD90S0VT-QW allows attackers to cause a Denial of Service (DoS) via a crafted RSTP request. | |||||
CVE-2022-26243 | 1 Tendacn | 2 Ac10, Ac10 Firmware | 2024-11-21 | 7.8 HIGH | 7.5 HIGH |
Tenda AC10-1200 v15.03.06.23_EN was discovered to contain a buffer overflow in the setSmartPowerManagement function. | |||||
CVE-2022-25688 | 1 Qualcomm | 299 Apq8009, Apq8009 Firmware, Apq8009w and 296 more | 2024-11-21 | N/A | 7.3 HIGH |
Memory corruption in video due to buffer overflow while parsing ps video clips in Snapdragon Auto, Snapdragon Compute, Snapdragon Connectivity, Snapdragon Consumer IOT, Snapdragon Industrial IOT, Snapdragon Mobile, Snapdragon Voice & Music, Snapdragon Wearables | |||||
CVE-2022-25686 | 1 Qualcomm | 213 Apq8017, Apq8017 Firmware, Apq8053 and 210 more | 2024-11-21 | N/A | 7.3 HIGH |
Memory corruption in video module due to buffer overflow while processing WAV file in Snapdragon Auto, Snapdragon Compute, Snapdragon Connectivity, Snapdragon Industrial IOT, Snapdragon Mobile, Snapdragon Wearables | |||||
CVE-2022-25680 | 1 Qualcomm | 2 Msm8996au, Msm8996au Firmware | 2024-11-21 | N/A | 8.4 HIGH |
Memory corruption in multimedia due to buffer overflow while processing count variable from client in Snapdragon Auto | |||||
CVE-2022-25659 | 1 Qualcomm | 307 Apq8009, Apq8009 Firmware, Apq8009w and 304 more | 2024-11-21 | N/A | 7.3 HIGH |
Memory corruption due to buffer overflow while parsing MKV clips with invalid bitmap size in Snapdragon Auto, Snapdragon Compute, Snapdragon Connectivity, Snapdragon Consumer IOT, Snapdragon Industrial IOT, Snapdragon Mobile, Snapdragon Voice & Music, Snapdragon Wearables | |||||
CVE-2022-25657 | 1 Qualcomm | 213 Apq8017, Apq8017 Firmware, Apq8053 and 210 more | 2024-11-21 | N/A | 7.3 HIGH |
Memory corruption due to buffer overflow occurs while processing invalid MKV clip which has invalid seek header in Snapdragon Auto, Snapdragon Compute, Snapdragon Connectivity, Snapdragon Industrial IOT, Snapdragon Mobile, Snapdragon Wearables | |||||
CVE-2022-25655 | 1 Qualcomm | 476 Apq8009, Apq8009 Firmware, Apq8017 and 473 more | 2024-11-21 | N/A | 8.4 HIGH |
Memory corruption in WLAN HAL while arbitrary value is passed in WMI UTF command payload. | |||||
CVE-2022-25635 | 3 Google, Linux, Realtek | 3 Android, Linux Kernel, Bluetooth Mesh Software Development Kit | 2024-11-21 | N/A | 6.5 MEDIUM |
Realtek Linux/Android Bluetooth Mesh SDK has a buffer overflow vulnerability due to insufficient validation for broadcast network packet length. An unauthenticated attacker in the adjacent network can exploit this vulnerability to disrupt service. | |||||
CVE-2022-25514 | 1 Nothings | 1 Stb Truetype.h | 2024-11-21 | 5.0 MEDIUM | 7.5 HIGH |
stb_truetype.h v1.26 was discovered to contain a heap-buffer-overflow via the function ttUSHORT() at stb_truetype.h. NOTE: Third party has disputed stating that the source code has also a disclaimer that it should only be used with trusted input. | |||||
CVE-2022-24949 | 1 Eternal Terminal Project | 1 Eternal Terminal | 2024-11-21 | N/A | 7.5 HIGH |
A privilege escalation to root exists in Eternal Terminal prior to version 6.2.0. This is due to the combination of a race condition, buffer overflow, and logic bug all in PipeSocketHandler::listen(). | |||||
CVE-2022-24910 | 1 Inhandnetworks | 2 Ir302, Ir302 Firmware | 2024-11-21 | 4.6 MEDIUM | 6.7 MEDIUM |
A buffer overflow vulnerability exists in the httpd parse_ping_result API functionality of InHand Networks InRouter302 V3.5.4. A specially-crafted file can lead to remote code execution. An attacker can send a sequence of requests to trigger this vulnerability. | |||||
CVE-2022-24793 | 2 Debian, Pjsip | 2 Debian Linux, Pjsip | 2024-11-21 | 4.3 MEDIUM | 7.5 HIGH |
PJSIP is a free and open source multimedia communication library written in C. A buffer overflow vulnerability in versions 2.12 and prior affects applications that use PJSIP DNS resolution. It doesn't affect PJSIP users who utilize an external resolver. This vulnerability is related to CVE-2023-27585. The difference is that this issue is in parsing the query record `parse_rr()`, while the issue in CVE-2023-27585 is in `parse_query()`. A patch is available in the `master` branch of the `pjsip/pjproject` GitHub repository. A workaround is to disable DNS resolution in PJSIP config (by setting `nameserver_count` to zero) or use an external resolver instead. | |||||
CVE-2022-24764 | 2 Debian, Teluu | 2 Debian Linux, Pjsip | 2024-11-21 | 5.0 MEDIUM | 7.5 HIGH |
PJSIP is a free and open source multimedia communication library written in C. Versions 2.12 and prior contain a stack buffer overflow vulnerability that affects PJSUA2 users or users that call the API `pjmedia_sdp_print(), pjmedia_sdp_media_print()`. Applications that do not use PJSUA2 and do not directly call `pjmedia_sdp_print()` or `pjmedia_sdp_media_print()` should not be affected. A patch is available on the `master` branch of the `pjsip/pjproject` GitHub repository. There are currently no known workarounds. | |||||
CVE-2022-24754 | 2 Debian, Teluu | 2 Debian Linux, Pjsip | 2024-11-21 | 7.5 HIGH | 8.5 HIGH |
PJSIP is a free and open source multimedia communication library written in C language. In versions prior to and including 2.12 PJSIP there is a stack-buffer overflow vulnerability which only impacts PJSIP users who accept hashed digest credentials (credentials with data_type `PJSIP_CRED_DATA_DIGEST`). This issue has been patched in the master branch of the PJSIP repository and will be included with the next release. Users unable to upgrade need to check that the hashed digest data length must be equal to `PJSIP_MD5STRLEN` before passing to PJSIP. |